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One facility minimax location with Euclidean distance:   1 / P  / - / l2 / max

Given  n  distinct points  Pi = (ai, bi)  in the plane,  the problem is to find a point  X  = (x, y)

that minimizes the maximum Euclidean distance from  X to the given points.

Let    f(X)  =  
 
max
1≤i≤n

  l2(X,Pi).  The problem is to minimize  f(X),  i.e.,

 min  
 
max
1≤i≤n

  l2(X,Pi).

A standard transformation is to write the problem as follows:

min  z

s.t.   l2(X,Pi)  ≤  z   for  i = 1, . . ., n.

This version of the problem has the geometric intrepretation of finding a circle with center  X

and minimum radius z  so that all the given points  Pi  are in the circle, called the minimum

covering circle problem. See Figure 1.
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Notice that in the example of Figure 1, the minimum covering circle is determined by three

points,  P1, P2, and P3.  Alternatively, the minimum covering circle may be determined by

two points, as in Figure 2.
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       Figure 2

An alternate geometric interpretation is to find the minimum radius  z  so that the circles

centered at  Pi with radius  z  have nonempty intersection  X.   See Figure 3.
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Elzinga and Hearn (1972) give a geometric algorithm for solving the one center problem with

Euclidean distances and they prove the correctness of the algorithm.

1. Choose any two points, Pi  and  Pj

2. Construct the circle whose diameter is  l2(Pi, Pj).

If this circle contains all points, then the center of the circle is the optimal  X.
Else,  choose a point  Pk  outside the circle.

3. If the triangle determined by  Pi,  Pj and Pk  is a right triangle or an obtuse triangle, 

rename the two points oposite the right angle or the obstuse angle as  Pi  and  Pj  

and go to step 2.

Else, the three points determine an acute triangle.  Construct the circle passing 

through the three points.  (The center is the intersection of the perpendicular 

bisectors of two sides of the triangle.)  If the circle contains all the points, stop, 

else, go to 4.

4. Choose some point  Pl  not in the circle, and let  Q  be the point among {Pi, Pj, Pk} 

that is greatest distance from Pl.  Extend the diameter through the point  Q  to a line 

that divides the plane into two half planes.  Let the point  R  be the point among

{Pi, Pj, Pk}that is in the half plane opposite Pl.  With the points  Q, R, and Pl,  go 

to step 3.

Example:  Consider the points  P1, . . . P5  as shown in Figure 4.  Starting the algorithm with

P2 and  P4, Figure 4 shows the circle whose diameter is the line segment  from P2  to  P4.
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In Step 2, choose  P1  as the point outside the circle.  The points {P1, P2, P4}  determine an

acute triangle, and Figure 5 shows the circle determined by the points {P1, P2, P4}.

P2

P
1

P3

P4

P
5

Figure 5

The point  P3  is not in the circle, and  Q = P1  is the point among  {P1, P2, P4}  that is

greatest distance from  P3.  Figure 5 shows the line extended from the diameter through  Q =

P1 and that  R  = P2 is the point among {P1, P2, P4} that is in the half plane opposite P3.

With the points  {Q, R, P3} =  {P1, P2, P3}, go to step 3.

Figure 6 shows the circle determined by the points  {P1, P2, P3}, which includes all points.
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An alternative algorithm is given by the Chrystal-Peirce Algorithm found in Sylvester (1860), and

Chrystal (1885):

0. Set  k = 1.  Construct a large circle which covers all the points  Pi,  and which passes 

through two points  Ps and Pt.  Define  Xk  as the center of the circle, and Sk  = {Ps, Pt}.

1. Let   ∠ PsPrPt   =  min{ ∠ PsPjPt  :  Pj  ∉ Sk }.  If  ∠ PsPrPt   is obtuse, stop.  The 

minimum circle has diameter  
1
2 l2(Ps, Pt),  and  X  =  

1
2 (Ps + Pt) .  Else, go to 2.

2. Compute the center of the circle,  Xk+1  passing through  Ps, Pr, and Pt.  If the triangle  

∆PsPrPt  is not obtuse, stop;  X  =  Xk+1.  Else, drop the point among Ps, Pr, and Pt

with the obtuse angle.  Rename the remaining points  Ps and Pt,  set  Sk+1 = {Ps, Pt}, 

increment  k  and go to 1.

This is a primal algorithm in that the current circle always covers all the given points, and the

radius decreases at each step.

The Kuhn-Tucker conditions for the minimax location problem:

For a general nonlinear programming problem with  f  and  gi  convex, continuous and

differentiable:

  min  f(x)

  s.t. gi(x)  ≥  0  i = 1, . . . , n

the Kuhn-Tucker optimality conditions state that  x is an optimal solution if and only if, there

exists λi  such that:

∇ f(x)  =   ∑
i=1

 n

λ i ∇ gi(x)  ,

gi(x)  ≥  0  i = 1, . . . , n,

λi  gi(x)  =  0    i = 1, . . . , n,

λi  ≥  0 i = 1, . . . , n.

Observe that the minimax Euclidean distance problem is equivalent to the minimax squared

Eulclidean distance problem:  

 min  
 
max
1≤i≤n

  l2(X,Pi)2.

 which is written in constrained form as:
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min  z

s.t.   z  ≥  (x – ai)2 + (y – bi)2    for  i = 1, . . ., n.

Then the Kuhn-Tucker state that  (x, y)  and  z  is an optimal solution if and only if

there exists  λi ≥ 0  such that the following conditions hold:

1 =  ∑
i=1

n

λ i  , (1)

0  =  ∑
i=1

 n

λ i (x – ai)   which gives   x  =   
Σiλ iai

 Σ iλ i
   =  Σiλiai,   (2)

0  =  ∑
i=1

 n

λ i (y – bi)   which gives   y  =   
Σiλ ibi

 Σ iλ i
   =  Σiλ ibi, (3)

z*  ≥  (x – ai)2 + (y – bi)2    for  i = 1, . . ., n,  and (4)

λi (z*  –  (x – ai)2 + (y – bi)2)  =  0    for  i = 1, . . ., n. (5)

These conditions are interpreted as follows:  Conditions (1), (2), and (3) imply that the center

of the circle,  X = (x, y),  is a convex combination of the given points  Pi  =  (ai, bi ),  but

conditions (5) state that the only  λi  allowed to be positive are associated with points  Pi  that

are on the circle, i.e., where conditions (4) hold at equality. Thus,  X  is a convex

combination  of those points  Pi  that lie on the circle.  Condition (4) requires all points Pi to

lie inside or on the circle centered at  X with radius  z.

A theorem of Caratheodory states that to express a given point  X  in  Rn  as a convex

combination of a given set of points, requires at most  n + 1  of the given points.  In the plane,

with  n = 2,  this theorem implies that to express the center  X  of the minimum covering circle

as a convex combination of the given points  Pi  requires at most 3 of the given points.

The minimax Euclidean distance problem requires either 2 or  3 points to specify the minimum

covering circle.
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A dual of the minimax Euclidean distance problem:   min  
 
max
1≤i≤n

   l2(X,Pi).

Consider the equivalent problem:    min  
 
max
1≤i≤n

   l2(X,Pi)2  in which the distance is squared.

This problem is equivalent to   min  z

s.t.   z  ≥   l2(X,Pi)2    i = 1, . . . , n.

The Lagrangian for this problem may be written as

L(z, x, λ)  =  z  – ∑
i=1

n

λ i (z  –  l2(X,Pi)2)   

=    z (1 – ∑
i=1

n

λi ) +  ∑
i=1

n

λ i   l2(X,Pi)2.

The Lagrangian dual is:

 
max
λ≥0

  
 
min
z X

     z (1 – ∑
i=1

n

λi )  +  ∑
i=1

n

λ i   l2(X,Pi)2

Observe that if  1 – ∑
i=1

n

λi   < 0,  then as  z → + ∞,  L(z, x, λ)  → – ∞,  and if  1 – ∑
i=1

n

λ i   > 0,

then as  z → – ∞,  L(z, x, λ)  → – ∞,  so that in either case, the dual has no maximum.

Thus the Lagrangian dual may be written as: 

max  
 
min
 X

   ∑
i=1

n

λ i   l2(X,Pi)2

s.t.   ∑
i=1

n

λi   = 1,   and   λ  ≥  0.
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Since    ∑
i=1

n

λi   l2(X,Pi)2  is strictly convex,  the minimum occurs if and only if the necessary

conditions are met, i.e.,    ∑
i=1

n

λ i  (X – Pi)   =  0,  or   X  =   ∑
i=1

n

λi Pi .  Thus the minimum can be

replaced with the constraint   X  =   ∑
i=1

n

λ i Pi .

Therefore the dual is:   max        ∑
i=1

n

λ i   l2(X,Pi)2

s.t. ∑
i=1

n

λ i   = 1,

 X  =   ∑
i=1

n

λ i Pi ,

λ  ≥  0.

This dual has the following interpretation.  Assume the given points  Pi  are rigidly

interconnected in a weightless lamina.  Consider the dual variable λi  as a weight to be

assigned to the points  Pi.  The center of gravity of the points  Pi  with weights  λi   is

X   =    ∑
i=1

n

λi Pi  .  The objective function gives the moment of inertia of this system of points

and weights about the center of gravity.  The constraint   ∑
i=1

n

λi    =  1 normalizes the assigned

weights to 1.  Thus the dual problem is to assign nonnegative weights  λi  to the points  Pi  in

order to maximize the moment of inertia of this system about its center of gravity  X.

The Kuhn-Tucker conditions state that the moment of inertia is maximized by assigning

positive weight only to the points  Pi  that are at the maximum distance from the center  X.

Another dual of the minimax Euclidean distance problem has a quadratic objective function

and linear constraints.  Standard quadratic programming approaches may be applied to its

solution.
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One facility minimax location with weighted Euclidean distance:   1 / P  / wi / l2 /

max

Given  distinct points  Pi = (ai, bi)  in the plane, and positive weights  wi  for  i = 1, . . . n,

the problem is to find a point  X  = (x, y)  that minimizes the maximum weighted Euclidean

distance from  X to the given points.  Let    f(X)  =   
 
max
1≤i≤n

  wi l2(X,Pi).  The problem is to

minimize  f(X),  i.e.,

 min  
 
max
1≤i≤n

  wi l2(X,Pi).

For two points  Ps  and  Pt,  let  L(Ps,Pt)  = { X :  wsl2(X,Ps)  =  wtl2(X,Pt) }, that is,  L(Ps,Pt)

is the set of points whose weighted distance to  Ps  equals the weighted distance to  Pt . If the

ratio  r  =   
wt
ws

   = 1, then  L(Ps,Pt) is a straight line, i.e., the perpendicular bisector of the line

joining  Ps  and  Pt.  If  r ≠ 1, then  L(Ps,Pt)  is a circle with radius  
r l2(Ps,Pt)

|1 – r2|
  ,  and center

Ps – r2Pt

1 – r2
  .

Figure 7 shows three points  P1 = (0,0),  P2 = (3,0), and  P3 = (0,4)  with weights  w1 = 6,

w2 = 8, w3 = 3, and the sets L(P1, P2), L(P1, P3), and L(P2, P3) intersecting at a common

point.  The common point is the solution to the minimax location problem on the points  P1,

P2, and  P3 with weighted Euclidean distance.

The following two results show how to determine the optimal solution for the 2 and 3 point

weighted minimax location problems.

Result 1:   For a weighted minimax location problem with two points  Ps  and  Pt, the optimal 

solution  X  lies at the intersection of the line between   Ps  and  Pt,  and the set  L(Ps,Pt).

Result 2:   For a weighted minimax location problem with three points  Ps,  Pt,  and  Pu, 

either the optimal solution is determined by one of the pair of points:  Ps and Pt, or

Ps and Pu, or Pt  and Pu, or the optimal solution is determined by all three points in which 

case  X  lies at the intersection of  L(Ps,Pt),  L(Ps,Pu), and  L(Pt,Pu).



45

L
  P

  ,
 P

( 
   

   
   

 )
1

3

L
  P

  ,
 P

( 
   

   
   

 )
2

3

L
  P

  ,
 P

( 
   

   
   

 )
1

2

P 1

P 2

=
 (

0,
 0

)

=
 (

3,
 0

)

P 3
=

 (
0,

 4
)

w 1
=

 6

w
2
=

 8

w 3
=

 3

ce
nt

er
 =

 (
19

2/
55

, –
36

/5
5)

ra
di

us
 =

 2
4/

11

ra
di

us
 =

 3
6/

7 
ce

nt
er

 =
 (

48
/7

, 0
)

ce
nt

er
 =

 (
0,

 –
4,

3)
ra

di
us

 =
 8

/3

Fi
gu

re
  7

.



46

An algorithm for the weighted minimax Euclidean distance problem is given as follows:

1. Choose any two points  Ps  and  Pt.  Solve the weighted minimax location problem 

with  Ps  and  Pt  for  X  and  z  =  wsl2(X,Ps)  using Result 1.

2. If   wi l2(X,Pi)  ≤  z  for all  Pi, stop.  Else select a point  Pu  such that

wu l2(X,Pu)  >  z  and go to 3.

3. Solve the weighted minimax location problem with  Ps,  Pt,  and  Pu,  for  X  and  z  

using Result 2.

4. If  X  and  z  are determined by two points, call them  Ps  and Pt  and go to 2.

5. Else,  X  and  z  are determined by three points.  If   wi l2(X,Pi)  ≤  z  for all  Pi, stop. 

Otherwise choose  Pv  such that wv l2(X,Pv)  >  z.

6. Using  Ps,  Pt,  Pu  and  Pv,  choose all combinations of two points and solve for  X

and z using Result 1, and choose all combinations of three points and solve for  X  and 

z  usint Result 2.  If  X  and  z  are determined by two points, call them  Ps  and  Pt  

and go to 2.  If  X  and  z  are determined by three points, call them   Ps,  Pt,  and  Pu  

and go to 5.

This is a finite algorithm, however in the worst case, the minimax problem must be solved on

4 points C(n, 4) times.  Elzinga and Hearn give heuristic improvements and alternate methods.

Drezner and Wesolowsky (1980)  give a similar algorithm for the weighted minimax location

problem with  lp  distances
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General Results for minimax location

The following general results are from Francis (1967).  The first result gives a lower bound

on the objective function value.

    Property 2-1    :  Define  bij  =  
wiwj

w i + w j
  d(Pi,Pj)  and  bst  =   

 
max
1≤i<j≤n

  bij .  Then  bst  ≤  f(X*).

Proof:  bst  =   
wswt

w s  + w t
  d(Ps,Pt)  ≤   

wt
w s  + w t

  wsd(Ps,X*)  +  
ws

w s  + w t
  wtd(X*,Pt)

≤    
wt

w s  + w t
   f(X*)  +  

ws
w s  + w t

   f(X*)  =   f(X*).

    Corrollary 2-1    :  The function  f  equals the lower bound  bst  at a point  X  if and only if

(1) d(Ps,Pt)   =  d(Ps,X*)  +  d(X*,Pt),

(2) wsd(Ps,X*)  =  wtd(X*,Pt),  and

(3) wid(X*,Pi)  ≤  bst  for  i  =  1, . . . , m    i ≠  s, t.

    Corrollary 2-2    :  Given the lower bound bst,  define  X  =  
ws

(w s + w t)
  Ps  +   

wt
(w s + w t)

  Pt .

If wid(X,Pi)  ≤  bst  for  i  =  1, . . . , m    i ≠  s, t,  then  X  minimizes  f.

Proof:  X  is a convex combination of  Ps  and  Pt  so that

d(Ps,Pt)   =  d(Ps,X*)  +  d(X*,Pt).

Also,  wsd(Ps,X*)  =    
wt

w s  + w t
  wsd(Ps,Pt)  =  bst,  and  likewise

wtd(X*,Pt)  =  bst.

    Property 2-2    :  If  X*  minimizes  f,  then there are at least two given points  Pi  and  Pj  such 

that

 f(X*)  = wid(X,Pi)  =   wjd(X,Pj).

For the Euclidean distance minimax location problem with all  wi = 1,  observe that the lower

bound is not necessarily tight.  Consider the given points  P1 = (5, 0),  P2 = (–3, 4),  and P3

= (–3, –4).  Then  b12  =  b13 =  
1
2 l2(P1,P2)  =  

1
2 l2(P1,P3)  =   2 5   and  b23  =    

1
2 l2(P2,P3)

=  4, so that  bst  =  2 5 .  However, the optimal location is  X* = (0, 0)  with   f(X*)  =  5  >

bst.
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One facility minimax location with rectangular distance:   1 / P / w i / l1 / max

Given  distinct points  Pi = (ai, bi)  in the plane,  and positive weights   wi   for  i = 1, . . ., n.

The problem is to find a point  X  = (x, y)  that minimizes the maximum weighted rectangular

distance from  X to the given points.  Recall that  l1(X,Pi)  =  | x – ai | + | y – bi |.

Let    f(X)  =   
 
max
1≤i≤n

  wi l1(X,Pi).  The problem is to minimize  f(X),  i.e.,

 min  
 
max
1≤i≤n

  wi l1(X,Pi).

The set of points of equal distance  z  from a given point  Pi  in  R2  is a "diamond" as shown

in Figure 8.

x

y

Pi

        Figure 8.

The approach is to transform the problem with rectangular distances into an equivalent

problem using l∞ distances where  l∞(X,Pi)  =  max { |x – ai |, |y – bi | }.  The set of points of

equal  l∞  distance from a given point  Pi  in  R2  is a square as shown in Figure 9.
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Consider a transformation  T  that rotates the coordinate axes clockwise through 45 degrees.

The transformation  T  is given by the nonsingular matrix  T  =  
1

2 
1 1
–1 1  .

    Property 2-3:     l1(X,Pi)  =  2  l∞(T(X),T(Pi)).

    Proof:   2  l∞(T(X),T(Pi))  =  2  max { 
1

2
  | x + y – a – b |, 

1

2
  | – x + y + a – b | }

=  max { (x + y – a – b),   (– x – y + a + b),  (– x + y + a – b),  (x – y – a + b) }

=  max { (x – a + y – b),   ( x – a – y + b),  (– x + a + y – b),  (– x + a – y + b) }

=  | x – a | + | y – b |   =  l1(X, Pi).

    Property 2-4:     X  is an optimal solution to   min  
 
max
1≤i≤n

  wi l1(X,Pi)  with objective function value  z

if and only if  T(X)  is an optimal solution to   min  
 
max
1≤i≤n

  wi l∞(T(X),T(Pi))  with objective

function value  2  z.

The approach is to solve the problem   min  
 
max
1≤i≤n

  wi l∞(T(X),T(Pi)).

Let  T(X) =  X' =  (x', y')  and  T(Pi)  =  P'i  =  (a'i, b'i).
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 Then the problem may be written as

  min  
 
max
1≤i≤n

  wi ( max { |x' – a'i |, |y' – b'i | })

or   min  max  {  
 
max
1≤i≤n

  wi |x' – a'i |,   
 
max
1≤i≤n

  wi |y' – b'i | }

from which two subproblems may be defined in the variables  x'  and  y'  respectively.

P(x'): min  
 
max
1≤i≤n

  wi |x' – a'i |,    and  P(y'):   min  
 
max
1≤i≤n

  wi |y' – b'i |

    Property 2-5:     If  x'  is an optimal solution to subproblem P(x') with objective function value  z'x
and  if   y'  is an optimal solution to subproblem P(y') with objective function value  z'y, then

X' = (x', y')  is an optimal solution to  min  
 
max
1≤i≤n

  wi l∞(T(X),T(Pi))  with objective function

value  max  (z'x, z'y).

How to solve  P(x'):  Write the equivalent constrained problem:

min  z'x

s.t.   |x – a'i |  ≤  
z'x
wi

   for  i = 1, . . . , n.

and the equivalent linear programming problem:

min  z'x

s.t.   x – a'i   ≤  
z'x
wi

   for  i = 1, . . . , n.

     – x + a'i   ≤  
z'x
wi

   for  i = 1, . . . , n.

From Property 2-1, a lower bound is given by

    
 
max
1≤i<j≤n

   
wiwj

w i + w j
  | a'i – a'j |   =  

wswt
w s  + w t

  | a's – a't |  for some  s and t.
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Using properties of the linear program, this lower bound may be shown to be tight for the

minimax location problem  P(x').    Thus the optimal solution has

z'x  =     
wswt

w s  + w t
  | a's – a't |    and  x'  =  

wsa's + wta't
w s  + w t

 .

For the subproblem  P(y'):   min  
 
max
1≤i≤n

  wi | y' – b'i |   a lower bound is given by

    
 
max
1≤i<j≤n

   
wiwj

w i + w j
  | b'i – b'j |   =  

wpwq
w p  + w q

  | b'p – b'q |  for some  p and q,

which is tight.  Thus the optimal solution has

z'y  =    
wpwq

w p  + w q
  | b'p – b'q |     and  y'  =  

wpb'p + wqb'q
w p  + w q

 .

Then an optimal solution to the problem:    min  
 
max
1≤i≤n

  wi l∞(X',P'i)

is  X'  =  (x', y')  and  z'  =  max (z'x, z'y).

If  z'x  =  z'y,  then  X'  =  (x', y') is the unique solution.

If  z'x  >  z'y,  then all  (x', y')  such that  wi | y' – b'i |  ≤  z'x  are alternative optimal

solutions.

The inequality is equivalent to   b'i – z'x / wi  ≤  y'  ≤  b'i + z'x / wi  for all  i = 1, . . , n,

which is equivalent to   maxi { b'i – z'x / wi }  ≤  y'  ≤   mini { b'i + z'x / wi }.

This shows that the alternative solutions are given by an interval in  y'.

If  z'y  >  z'x,  then all  (x', y')  such that  wi | x' – a'i |  ≤  z'y  are alternate optimal solutions, 

which can be expressed as an interval in  x'  similar to the above.

Figure 10 shows an example with three points and all weights equal 1.  The optimal solution is

determined by  P1  and  P2. Alternative solutions are indicated by the vertical line segment

adjacent to  X.
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X

P3

Figure 10.

Finally, optimal solutions to  min  
 
max
1≤i≤n

  wi l1(X,Pi)  are given by  X =  T-1(X')

and  z = 
1

2
  z'.

An alternative approach for the rectangular distance minimax location problem is given as follows.

Property 2-1 shows that the expression

  
 
max
1≤i<j≤n

  
wiwj

w i + w j
  l1(Pi,Pj)  =   

wswt
w s  + w t

  l1(Ps,Pt)  =  bst  for some  s  and  t

is a lower bound for the objective function value.  This bound may be shown to be tight, and

one optimal solution  X  is given by   X  =   
wsPs + wtPt
w s  + w t

 .  Alternative solutions are given by

the set  { X :  wi l1(X, Pi)  ≤  bst }.  Explicit expressions may be given that determine and

interval of alternative solutions.
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Multifacility minimax location with rectangular distance:   M  / P / w i / l1 / max

The problem is to locate several new facilities with respect to a given set of existing facilities

and with respect to other new facilities, so as to minimize the maximum weighted distance

between pairs of new facilities or between pairs of new and existing facilities.

Let  Pi = (ai, bi)  i = 1, . . , n  be given points in  Rn.  Let  Xj,  j = 1, . . , m  denote the  m

new facilities to be located.

Let  wji  be a nonnegative weight associated with the distance between each  Xj  and  Pi  for

i = 1, . . , n  and  j = 1, . . , m.  Let  vjk  be a nonnegative weight associated with the distance

between each  Xj  and  Xk  for  1 ≤  j <  k  ≤  m.  Then the multifaciliity minimax location

problem with rectangular distance can be stated as:

 
 
min
X1 . . .Xm

   max { 
 
max
1≤j<k≤m

  vjk l1(Xj, Xk),  
 max
1≤i≤n
1≤j≤m

  wji l1(X,Pi) }.

Thus each of the  m  new facilities is to be located with respect to the  n  existing facilities and

also with respect to the other new facilities.  The location of  Xj  may depend on the location

of some point  Xk  because of the terms involving  vjk.

New facility locations  Xj  and Xk  are said to be linked if  vjk  is positive and not linked if  vjk

is zero.  It is assumed that each new facility location  Xj  is linked with at least one other new

facility location, otherwise the location of  Xj  could be determined independently of the other

new facility locations by considering a separate problem.

New facility location  Xj  and existing facility location  Pi  are said to be linked if  wji  is

positive and not linked if  wji  is zero.  If a new facility  Xj is not linked to any existing

facility, then it must be linked to some new facility that is linked to some existing facility.

Otherwise, the set of all new facilities that are not linked to any existing facility can be located

at a common point anywhere.   Henceforth, we assume the multifacility location problem is

well formulated with respect to facilities being linked to one another.  These assumptions

imply that there exist an optimal solution.  For the convenience of the presentation, we assume

all the  wji  and all the vjk  are positive.
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The transformation  T  is applied to the multifacility problem to obtain the following equivalent

problem:

 
 
min
X'1 . . .X'm

   max { 
 
max
1≤j<k≤m

  vjk l∞(X'j, X'k),  
 max
1≤i≤n
1≤j≤m

  wji l∞(X',P'i) }.

Thus the one dimensional multifacility minimax location problems in x'  and  y'  may be

considered independently.  The subproblem in  x'  is written as:

 
 
min
x'1 . . .x'm

   max { 
 
max
1≤j<k≤m

  vjk | x'j – x'k |,  
 max
1≤i≤n
1≤j≤m

  wji | x'– a'i | }.

Each one dimensional subproblem may be formulated as a linear programming problem.  For

convenience, a dual variable is written adjacent to each constraint.

min  z' dual variables

s.t. x'j –  x'k  + 
z '
vjk

   ≥  0 1 ≤ j < k ≤ m fjk

– x'j +  x'k  + 
z '
vjk

   ≥  0 1 ≤ j < k ≤ m fkj

x'j +  
z '
wji

   ≥  a'i 1 ≤ j ≤ m,  1 ≤ i ≤ n fijt

– x'j +  
z '
wji

   ≥  – a'i 1 ≤ j ≤ m,  1 ≤ i ≤ n fsij

Then the dual is written as follows:

max     ∑
j=1

m

  ∑
i=1

n
a'i fijt   –    ∑

j=1

m

  ∑
i=1

n
a'i fsij (1)

s.t.  ∑
k=1 k≠j

m

 fjk    –  ∑
k=1 k≠j

m

 fkj   +  ∑
i=1

n
fijt   –  ∑

i=1

n
fsij     =  0      1 ≤ j ≤ m, (2)

          ∑
j=1

m

   ∑
k>j

m
  fjk/vjk   +    ∑

j=1

m

   ∑
k>j

m
  fkj/vjk    +     ∑

j=1

m

  ∑
i=1

n
 fijt/wji     +    ∑

j=1

m

  ∑
i=1

n
  fsji/wji    =  1(3)

all variables nonnegative.
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Add the two redundant constraints and the variable  v:

∑
j=1

m

  ∑
i=1

n
  fsji    =  v (4)

   –  ∑
j=1

m

  ∑
i=1

n
 fijt    =  – v. (5)

Constraints (1), (2), (4), and (5) define a network flow problem.  The set of nodes is {s, 1, .

. . , m, t}.  The nodes  1, . . . , m  constitute a complete network with directed arcs  (j, k)

with flow  fjk and cost 0  for all  j ≠ k.  There are n  parallel arcs from node  s to each  node  j

with flow  fsij,  and cost  –a'i. There are n  parallel arcs from node each  node  j  to node  t

with flow  fijt,  and cost  a'i.  There is an arc (t, s)  with flow  v.

Constraints (2) are conservation of flow constraints for nodes  j = 1, . . . , m.  Constraint (4)

requires conservation of flow for node  s,  and constraint  (5) requires conservation of flow

for node  t.

Constraint (3) multiplies the flow on each arc by a weight of either  1/vjk  or  1/wji  and

restricts the total weighted flow to equal 1.

The objective is to maximize the total cost of flow cycling through the network.

Figure 11 illustrates a network with  m = 3 facilities to be located, and  n = 2 existing

faciliites.  Adjacent to each arc is the arc cost.

Let  S  be a simple path from node  s  to node  t.  The conservation of flow constraints imply that

there is a constant flow, of say  f, on path  S.  Let  W(S)  be the total of all arc weights on the

path  S, that is,

W(S)  =   ∑
kj∈ S

  1/vjk   +    ∑
ji∈ S

 1/w ji   .
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Constraint (3) implies that  W(S)f = 1,  so that  f = 1/W(S).  Let  C(S) be the total of all arc

cost on the path  S,  then the objective function value is  C(S)f  =  C(S)/W(S).  Therefore, the

objective is to find the path  S  of maximum cost to weight ratio  C(S)/W(S).
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                       Figure 11.

The problem is solved by forming the Lagrangian with respect to constraint (3).  Letting λ  be

the Lagrange multiplier for constraint  (3), the Lagrangian problem adjusts the arc costs by

subtracting λ   times the arc weight from the arc cost of each arc, and asks for a simple path of

maximum total adjusted arc cost.  For a simple path  S  from  s to t,  the objective function of

the Lagrangian gives the ratio  C(S)/W(S)  over the path  S.

Finding the simple path of maximum cost to weight ratio is accomplished as follows:

Set  λ 1 = 0,  and initiate with  i = 1.  Adjust the arc costs of the Lagrangian by  λ i  and find

the maximum cost simple path,  Si  from  s to t.  Set  λ i+1  =   C(Si)/W(Si),  and continue

until there is no improvement.  It may be shown that  λ i+1 > λ i  at each step until

termination, and that the algorighm stops after a finite number of iterations.  See Dearing and

Francis (1974).

The dual variable values (node labels)  from the network solution give the optimal values of

the locations:  x'j  j = 1, . . . , n,  and the optimal objective function value  λ*  =  z'x.
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The subproblem in  y'j  is solved in a similar fashion for  y'j  j = 1, . . . , n,  and the optimal

objective function value   z'y.

Then the solution to the transformed problem is  X'j  = (x'j, y'j)  for  j = 1, . . . , n,  and the

optimal objective function value  z'  =  max( z'x, z'y).

The solution to the original problem is obtained by the inverse transformation  T-1.

Alternatively, the constrained multifacility problem in  R2  with  l1  distances may be formulated

directly as a linear programming problem with  4n + 4m  constraints and 2m + 1 variables.

This is well within the capacity of modern LP solvers.
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Multifacility minimax location with Euclidean distance:   M  / P / w i / l2 / max

The problem is to locate several new facilities with respect to a given set of existing facilities

and with respect to other new facilities, so as to minimize the maximum weighted distance

between pairs of new facilities or between pairs of new and existing facilities.  Let  Pi = (ai,

bi)  i = 1, . . , n  be given points in  Rn.  Let  Xj,  j = 1, . . , m  denote the  m  new facilities to

be located.

Let  wji  be a nonnegative weight associated with the distance between each  Xj  and  Pi  for

i = 1, . . , n  and  j = 1, . . , m.  Let  vjk  be a nonnegative weight associated with the distance

between each  Xj  and  Xk  for  1 ≤  j <  k  ≤  m.  Then the multifaciliity minimax location

problem with Euclidean distance can be stated as:

 
 
min
X1 . . .Xm

   max { 
 
max
1≤j<k≤m

  vjk l2(Xj, Xk),  
 max
1≤i≤n
1≤j≤m

  wji l2(X,Pi) }.

Thus each of the  m  new facilities is to be located with respect to the  n  existing facilities and

also with respect to the other new facilities.  The location of  Xj  may depend on the location

of some point  Xk  because of the terms involving  vjk.

We assume the multifacility location problem is well formulated with respect to facilities being

linked to one another.  These assumptions imply that there exist an optimal solution.  Without

loss of generality, we assume all the  wji  and all the vjk  are positive.

The problem is equivalent to the problem with weighted distances squared:

 
 
min
X1 . . .Xm

   max { 
 
max
1≤j<k≤m

  v2jk l2(Xj, Xk)2,  
 max
1≤i≤n
1≤j≤m

  w2ji l2(Xj,Pi)2 }.

and to the constrained problem:

min  z

z  ≥  v2jk l2(Xj, Xk)2 1  ≤  j < k  ≤  m

z  ≥  w2ji l2(X,Pi)2 1 ≤ i ≤ n,   1 ≤ j ≤ m
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As in the one facility model, write the Lagrangian of the constrained problem:

L(z, X, λ , γ )  =  z  – ∑
1≤<j≤m

 
  λ ,jk (z –  v2jk l2(Xj, Xk)2)  – ∑

i=1

 n

  ∑
j=1

 m

  γ ij(z – w2ji l2(Xj,Pi)2)

then the Lagrangian dual is:   
 

max
λ   γ    

 
min
z Xj

   L(z, X, λ , γ ).

The necessary conditions are:

 
∂  
∂z   L(z, X, λ, γ )  =  0  implies   1  =   ∑

1≤<j≤m

 
  λ ,jk  +   ∑

i=1

 n

  ∑
j=1

 m

  γ i j (1)

These conditions eliminate the terms involving  z  from the Lagrangian.

∂  
∂X   L(z, X, λ, γ )  =  0  implies  ∑

1≤<j≤m

 
  λ ,jk v2jk (Xj – Xk)  +   ∑

j=1

 m

  γij w2ji (Xj – Pi)  =  0(2)

∂  

∂λ
   L(z, X, λ , γ )  =  0  implies    z  ≥  v2jk l2(Xj, Xk)2 1  ≤  j < k  ≤  m (3)

∂  

∂γ 
   L(z, X, λ, γ )  =  0  implies    z  ≥  w2ji l2(X,Pi)2 1≤i≤n,   1≤j≤m (4)

Observe that equations (2) are a generalization of the necessary conditions for the squared

Euclidean distance problem whose solution is the center of gravity.  Given values of  λ  and γ,

equations  (2) may be solved for  X  by a system of equations.  If  λ  and γ  are the optimal

values of the dual multipliers, then the solution  X  is the optimal location.

This leads to an iterative procedure for estimating  λ  and γ.

1. Set  t = 0.  Set initial values of λ(t)jk  and  γ (t)ij to 1.

2. Solve for  X(t)j  using equations  (2) and λ(t)jk  and  γ (t)ij .

3. Set  λ(t+1)jk  =  λ(t)jkwji l2(X(t)j, Pi)/U   and γ (t+1)ij  =  γ (t)ij vjk l2(X(t)j, X(t)k)/U,
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where  U  =   ∑
1≤<j≤m

 
  λ(t)jk vjk l2(X(t)j, X(t)k)  – ∑

i=1

 n

  ∑
j=1

 m

  γ (t)ij wji l2(X(t)j,Pi).

4. Find  z(t)  as the objective function value using X(t)j    j = 1, . . . , m.

5. If  a stopping criteria on  z(t)  is met, stop, else, set  t = t + 1, and go to 2.



61

References:

Drezner, Z. and G. O. Wesolowsky, Single Facility lp  distance minimax location, SIAM

Algebraic Discrete Methods, 11, (1980) pp 315-321.

Elzinga J., D. W. Hearn, "Geometrical Solutions for some minimax location problems,"

Transportation Science, 6, (1972), pp 379 - 394.

Francis, R. L.,  "Some aspects of a minimax location problem," Operations Research, 15, (1967)

pp 1163-1169.

Hearn, D. W. and J. Vijay, Efficient Algorithms for the Weighted Minimum Circle Problem, Opns

Res, 30 (1982) pp 777-795.



62

Problems

1.  Suppose four given point are located at (0,0), (0,10), (5,0), (12,6) and all  wi  are equal.

a. Find the gravity solution.

b. Use the gravity solution to intiate the iterative method and do 4 iterations.

c. Verify the solution by the illustration on page 12.


