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One facility minimax location with Euclidean distance: 1/ P/-/1>/ max

Given n distinct points Pj = (aj, bj) inthe plane, the problemisto find apoint X =(x,Y)
that minimizes the maximum Euclidean distance from X to the given points.

Let f(X) = max [o(X,Pj). The problemisto minimize f(X), i.e,

1<i<n
min max [>(X,P;).
1<i<n

A standard transformation isto write the problem as follows:

min z
st. [»(X,Pj)) <z fori=1,...,n.

This version of the problem has the geometric intrepretation of finding acircle with center X
and minimum radius z so that all the given points P;j areinthecircle, caled the minimum

covering circle problem. See Figure 1.

~0

Figure 1



37

Notice that in the example of Figure 1, the minimum covering circle is determined by three
points, P1, P2, and P3. Alternatively, the minimum covering circle may be determined by

two points, asin Figure 2.

Figure 2

An aternate geometric interpretation is to find the minimum radius z so that the circles
centered at Pj with radius z have nonempty intersection X. SeeFigure 3.

o
)2

Figure 3
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Elzingaand Hearn (1972) give a geometric algorithm for solving the one center problem with
Euclidean distances and they prove the correctness of the algorithm.
1. Choose any two points, P; and Pj
2. Congtruct the circle whose diameter is 12(P;, Pj).
If thiscircle contains al points, then the center of the circleisthe optimal X.
Else, chooseapoint Py outsidethe circle.
3. Ifthetriangle determined by Pj, Pjand Py isaright triangle or an obtuse triangle,
rename the two points oposite the right angle or the obstuse angle as P; and P
and go to step 2.
Else, the three points determine an acute triangle. Construct the circle passing
through the three points. (The center is the intersection of the perpendicular
bisectors of two sides of the triangle.) If the circle contains all the points, stop,
else, goto 4.
4. Choose somepoint P; notinthecircle, andlet Q bethe point among { P;, Pj, Pk}
that is greatest distance from Py. Extend the diameter through the point Q toaline
that divides the plane into two half planes. Let the point R be the point among
{Pi, Pj, Pi}that isin the half plane opposite P|. With the points Q, R, and P, go
to step 3.

Example: Consider the points P4, ... Ps asshownin Figure4. Starting the algorithm with
P2 and P4, Figure 4 shows the circle whose diameter is the line segment from P, to Pa.

7
°

ep

Figure 4.
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In Step 2, choose P asthe point outside the circle. The points{P1, P2, P4} determinean
acute triangle, and Figure 5 shows the circle determined by the points { P1, P2, P4} .

Figure5

Thepoint P3 isnotinthecircle, and Q =P1 isthepoint anong {P1, P2, P4} thatis
greatest distance from P3. Figure 5 shows the line extended from the diameter through Q =
Pprandthat R =Py isthe point among { P1, P2, P4} that isin the half plane opposite Pa.
With the points {Q, R, P3} = {P1, P2, P3}, goto step 3.

Figure 6 shows the circle determined by the points {P1, P2, P3}, which includes al points.

R

Figure 6
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An dternative algorithm is given by the Chrystal-Peirce Algorithm found in Sylvester (1860), and
Chrystal (1885):
0. Set k=1. Congtruct alarge circle which coversal the points Pj, and which passes
through two points Psand P;. Define Xk asthe center of thecircle, and S¢ = {Ps, Pt}.
1. Let OPsPPy = min{ OPsPP; : Pj O Sc}. If OPsPP; isobtuse, stop. The
minimum circle has diameter %IZ(PS, Py, and X = %(Ps+ Py) . Else goto 2.

2. Computethe center of thecircle, Xy+1 passing through Ps, Py, and Py. If thetriangle
APSP Py isnot obtuse, stop; X = Xg+1. Else, drop the point among Ps, Py, and Py
with the obtuse angle. Rename the remaining points Psand Py, set Sc1 ={Ps, Pt},
increment k and goto 1.

Thisisaprimal agorithm in that the current circle always covers al the given points, and the
radius decreases at each step.

The Kuhn-Tucker conditions for the minimax location problem:

For agenera nonlinear programming problem with f and g convex, continuous and
differentiable;

min  f(x)

st. gix)=20i=1...,n
the Kuhn-Tucker optimality conditions state that x isan optimal solution if and only if, there
exists Aj such that:

n
0f) = 3 AiDgi(x)

i=1
gi(x) = 0 i=1,...,n,
Ai gi(x) =0 i=1...,n,
A =20 i=1,...,n.

Observe that the minimax Euclidean distance problem is equivalent to the minimax squared
Eulclidean distance problem:

min max 1o(X,P;)2.
1<i<n

which iswritten in constrained form as:
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min z

st. z2> (x—a)2+(y—-hb)2 fori=1,...n.

Then the Kuhn-Tucker statethat (x,y) and z isan optimal solution if and only if
thereexists Aj =0 such that the following conditions hold:

n
1= YA, D
i=1
" SiA
0= YAi(x—a) whichgives x = 8% = 5, 2
i§1|(X i) which giv X > A iAid (2
) SiAibi
0= S Ai(y-b) whichgives y = ——— = ZjAib, (3)
i=1 2iAi
Z > (x—a)2+(y—-b)2 fori=1,...,n and (4)
Ai(z - (x—a)2+(y—-b)2) =0 fori=1,...n (5)

These conditions are interpreted as follows: Conditions (1), (2), and (3) imply that the center
of thecircle, X=(x,y), isaconvex combination of the given points P; = (aj, bj), but
conditions (5) state that the only A; allowed to be positive are associated with points P; that
areon thecircle, i.e., where conditions (4) hold at equality. Thus, X isaconvex
combination of those points P; that lie on the circle. Condition (4) requires all points P;j to
lieinside or on the circle centered at X with radius z

A theorem of Caratheodory states that to expressagiven point X in R" asaconvex
combination of agiven set of points, requiresat most n+ 1 of the given points. Inthe plane,
with n=2, thistheorem implies that to express the center X of the minimum covering circle
as a convex combination of the given points P; requiresat most 3 of the given points.

The minimax Euclidean distance problem requires either 2 or 3 points to specify the minimum
covering circle.
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A dual of the minimax Euclidean distance problem: min max [>(X,P;).
1<i<n

Consider the equivalent problem: minmax [x(X,P;)2 in which the distance is squared.
1<isn

Thisproblemisequivalentto  min z
st. z2= 1p(X,P)2 i=1,...,n.

The Lagrangian for this problem may be written as

Lz % A) = 2 = Ai(z = 12(X,Pi)?)

i=1
= Z(l—z/\i ) + Z)\i Io(X,Pj)2.
i=1 i=1

The Lagrangian dudl is:

n n
max min - z(1-$A) + S A 12(X,Pi)2

A=0 z X i1 i1
n n
Observe that if 1—ZAi <0, thenas z » + %, L(z,x, A) — — oo, andif 1—2)\i >0,
i=1 i=1

thenas z - — o0, L(z,x,A) - — 00, sothat in either case, the dual has no maximum.

Thus the Lagrangian dual may be written as:
n

max min 2}“ Io(X,Pj)2
X ia

n
st. ZAi =1, and A =2 0.
i=1
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n
Since ZAi 12(X,Pj)2 isstrictly convex, the minimum occursif and only if the necessary

i=1
n n
conditions are met, i.e., z}\i (X=Pj)) =0, or X = Z)\i P; . Thus the minimum can be
i=1 i=1

n
replaced with the constraint X = z}\i P; .
i=1

n
Thereforethedua is. ~ max S A 12(X,Pj)2
i=1

n
S.t. Z/\i =1,
i=1

n
X = 2)\i Pi,
i=1

A =0.

Thisdual hasthe following interpretation. Assume the given points P; arerigidly
interconnected in aweightlesslamina. Consider the dual variable A; asaweight to be

assigned to the points Pj. The center of gravity of the points P; withweights A; is
n
X = Z}\i Pi . The objective function gives the moment of inertia of this system of points
i=1
n
and weights about the center of gravity. The constraint z}\i = 1 normalizes the assigned

i=1
weightsto 1. Thusthe dual problem isto assign nonnegative weights A;j to the points P;j in
order to maximize the moment of inertia of this system about its center of gravity X.
The Kuhn-Tucker conditions state that the moment of inertiais maximized by assigning
positive weight only to the points P; that are at the maximum distance from the center X.

Another dual of the minimax Euclidean distance problem has a quadratic objective function
and linear constraints. Standard quadratic programming approaches may be applied to its
solution.
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One facility minimax location with weighted Euclidean distance: 1/ P/wj/ly/
max

Given distinct points Pj = (aj, bj) in the plane, and positive weights w; for i =1,...n,
the problemistofind apoint X =(x,y) that minimizes the maximum weighted Euclidean

distance from Xtothegiven points. Let f(X) = max w; lo(X,P;). The problemisto
1<i=sn

minimize f(X), i.e,
min max  w; 12(X,Pj).

1<i<n

For two points Ps and Py, let L(Ps,Pt) ={ X: wda(X,Ps) = wtlo(X,Py) }, that is, L(Ps,Pt)
isthe set of points whose weighted distanceto Ps equals the weighted distanceto Py . If the

ratio r = i3 =1, then L(Ps,Py) isastraight line, i.e., the perpendicular bisector of theline

Ws
L . : . . 1lx(Ps,P
joining Ps and Py. If r# 1, then L(Ps,Pt) isacirclewith radlusﬁ , and center
Ps—rzpt
1-r2

Figure 7 shows three points P1 = (0,0), P2 =(3,0), and P3=(0,4) with weights w1 =6,
wo = 8, waz = 3, and the sets L(P1, P2), L(P1, P3), and L(P>, P3) intersecting at a common
point. The common point is the solution to the minimax location problem on the points P4,
P>, and P3with weighted Euclidean distance.

The following two results show how to determine the optimal solution for the 2 and 3 point
weighted minimax location problems.

Result 1. For aweighted minimax location problem with two points Ps and P, the optimal
solution X lies at the intersection of the line between Ps and P;, and theset L(Ps,Py).
Result 2:  For aweighted minimax location problem with three points Ps, Pt, and Py,
either the optimal solution is determined by one of the pair of points. Psand Py, or
Psand Py, or Py and Py, or the optimal solution is determined by all three pointsin which
case X liesat theintersection of L(PgPt), L(Ps,Py), and L(Pt,Py).
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An agorithm for the weighted minimax Euclidean distance problem is given asfollows:

1. Choose any two points Ps and P;. Solve the weighted minimax location problem
with Ps and Pt for X and z = wgl2(X,Ps) using Result 1.

2. If wjlo(X,Pj) < z foral Pj, stop. Elseselect apoint Py such that
wy I12(X,Py) > z and go to 3.

3. Solve the weighted minimax location problem with Pg, Py, and Py, for X and z
using Result 2.

4. If X and z are determined by two points, call them Ps and P; and goto 2.

5. Else, X and z are determined by three points. If w; [o(X,Pj) < z foral Pj, stop.
Otherwise choose P, such that wy I2(X,Py) > z

6. Using Ps, P, Py and Py, chooseall combinations of two points and solve for X
and z using Result 1, and choose all combinations of three points and solve for X and
z usint Result 2. If X and z are determined by two points, call them Ps and Pt
andgoto 2. If X and z are determined by three points, call them Ps, Pt, and Py
and go to 5.

Thisisafinite algorithm, however in the worst case, the minimax problem must be solved on
4 points C(n, 4) times. Elzinga and Hearn give heuristic improvements and alternate methods.

Drezner and Wesolowsky (1980) give asimilar agorithm for the weighted minimax location
problemwith |, distances
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General Results for minimax location
The following general results are from Francis (1967). Thefirst result gives alower bound
on the objective function value.

Property 2-1: Define bjj = —L_ d(P;P)) and by = max  bjj. Then by < f(X*).
Wi + Wj 1<i<jsn
: __ WsWy Wit Ws
Proof: bg = m d(Ps,Py) < m wsd(Ps,X*) + m wid(X* ,Py)
Wt Ws _
< m f(X*) + m f(X*) = f(X*)

Corrollary 2-1: Thefunction f equalsthelower bound by at apoint X if and only if
(1) d(PsPy = d(Ps,X*) + d(X*,Py),
(2 wsd(Ps,X*) = wid(X*,Py), and
(©)) wid(X*,Pj) < bg for i = 1,...,m i# st

. ) . _ Wsg Wi
Corrollary 2-2: Given the lower bound by, define X = (D) Ps + We v Wy Pt .

If wid(X,Pj) < bg for i = 1,...,m i# st then X minimizes f.

Proof: X isaconvex combination of Pg and P; so that
d(Ps,Py) = d(Ps,X*) + d(X*,Py).
o\ Wt _ . .
Also, wgd(Pg,X*) = W wsd(Ps,Py) = by, and likewise
wid(X*,Py) = bg.

Property 2-2: If X* minimizes f, then there are at least two given points P and Pj such

that
f(X*) =wid(X,P)) = wid(X,P}).

For the Euclidean distance minimax location problem with all wj =1, observe that the lower
bound is not necessarily tight. Consider the given points P1 = (5, 0), P2 =(-3, 4), and P3
=(-3,4). Then bz = bi3= 12(PLP2) = 312(PLP3) = 25 and by = 312(P2Py)
= 4,sotha by = 24/5. However, the optimal location is X* = (0, 0) with f(X*) = 5 >
bst.
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One facility minimax location with rectangular distance: 1/ P /wj/I1/ max

Given distinct points Pj = (aj, bj) inthe plane, and positive weights w; for i=1,...,n.
Theproblemistofindapoint X =(X,y) that minimizesthe maximum weighted rectangular
distance from Xtothe given points. Recall that 11(X,P;) = |x—a |+|y—Dbj|.

Let f(X) = max w;l1(X,Pj). The problemisto minimize f(X), i.e,
1<i<n

min max  w; 11(X,P;).
1<i<n

The set of points of equal distance z from agiven point Pj in R2 isa"diamond" as shown
in Figure 8.

y
A

Figure 8.
The approach isto transform the problem with rectangular distances into an equivalent
problem using |« distanceswhere lo(X,Pj) = max{ [x—aj|, [y—Dbj|}. The set of points of
equal | distance from agiven point P; in R2 isasquare as shown in Figure 9.
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>“<

Figure 9.
Consider atransformation T that rotates the coordinate axes clockwise through 45 degrees.
The transformation T isgiven by the nonsingular matrix T = é&l i H.

Property 2-3: 11(X,Pi) = V2 lo(T(X),T(P))).

Proof: V2 1e(T(X),T(P)) = V2 max { —= 1

NG IX+y—a—bI,EI—X+y+a—bI}
= max{ (x+y—-a-b), (-x-y+a+b), (-x+y+a-b), (x—-y—a+b)}

= max{ (x—a+y-b), (x—a-y+bhb), (~-x+a+y-hb), (-x+a-y+hb)}

= [x=al+|y=b| = I1(X Pj).

Property 2-4. X isan optimal solutionto min max w; [1(X,P;) with objective function value z
1<i<n

if and only if T(X) isanoptimal solutionto min max w; l(T(X),T(P;)) with objective
1<isn

function value V2 z

The approach isto solve the problem  min max  w 1o, (T(X), T(P})).

1<i<n

Let T(X)= X' = (X, y) and T(P) = P = (aj, bY).
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Then the problem may be written as

min max  w; (max { [x —all, ly' =b'i|})
1<i<n

or min max { max wj [x' —a’j|, max w;ly'—b'j|}

1<i<n 1<i=n

from which two subproblems may be defined in the variables X' and y' respectively.

P(x): min max w;j|x' —a], and P(y'): minmax wjly' —b'|
1<ign 1<isn

Property 2-5: If X' isan optimal solution to subproblem P(x) with objective function value Z
and if y isanoptimal solution to subproblem P(y") with objective function value Zy, then
X' =(x,Yy) isan optima solutionto min max w; l(T(X),T(P;)) with objective function

1<isn
value max (Zy, Zy).

How to solve P(x): Write the equivaent constrained problem:

min Z'x

, Zy .
—_ H < —_— =
st. |x a.|_Wi for i=1,...,n.

and the equivalent linear programming problem:

min Z'x
st. x—a < Zx for i=1 n
. L. - | _Wi -4, ...,IL
Zy .
—_X+a; <= =
X+ aj W fori=1,...,n.

From Property 2-1, alower bound is given by

Wi Wi
Wi + W

WsWt

ma)( R e Tt .
We + Wy |a's—a't| for some sandt

2 |ai—aj| =
1<i<j<n
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Using properties of the linear program, this lower bound may be shown to be tight for the
minimax location problem P(X). Thusthe optimal solution has

. WsWi

S = __Ws's + Wid't
X Ws + Wi

|a's—a't| and x' = We T Wy

For the subproblem P(y'): min max w; |y —b'j | alower bound is given by

1<i<n

WiWj WpW,
max  ——— |bj-bj| = —L—d— |b)py—blq| for some pandq,
1<i<jsn Wi T W] Wp + Wq

which istight. Thusthe optimal solution has

Lo WoWg . __Wpb'p + Wgb'q
Zy = Wp+Wq|bp b'ql andy Wp T Wy

Then an optimal solution to the problem:  minmax  w; l(X',P'j)
1<i<n

is X'

(x,y) and Z = max (Zx, Zy).

If Zx = Zy, then X' = (X, y') is the unique solution.
If Zxy > Zy, thenadl (X,y) suchthat w;|y —Db'j| < Zx are alternative optimal
solutions.
Theinequality isequivalentto b'j—Zx/w; <y < bj+2Zy/w foral i=1,..,n,
whichisequivaentto maxj{ b'i—Zx/wj} <y < mini{ bj+Zx/wj}.
This shows that the alternative solutions are given by an interval in .
If Zy > Zy, thenal (X,y) suchthat wi|x —a’j| < Zy are aternate optimal solutions,

which can be expressed asan interval in X' similar to the above.

Figure 10 shows an example with three points and all weightsequal 1. The optimal solutionis
determined by P71 and Po. Alternative solutions are indicated by the vertical line segment
adjacent to X.
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Figure 10.

Finally, optimal solutionsto min max w; 11(X,P;) aregivenby X = T-1(X)
1<ign

and z= L z
N
An alternative approach for the rectangular distance minimax location problem is given asfollows.
Property 2-1 shows that the expression

WiWi L Wawg _
max W|_+JW_J 11(Pi,P)) = We T Wy 11(Ps,Pt) = by for some s and t

1<i<j<n

isalower bound for the objective function value. This bound may be shown to be tight, and

. . o Ps + wtP . : .
one optimal solution X isgivenby X = H Alternative solutions are given by
S

theset { X: wj11(X, Pj) < bg}. Explicit expressions may be given that determine and

interval of aternative solutions.



53
Multifacility minimax location with rectangular distance:. M /P /wj/l1/ max

The problem isto locate severa new facilities with respect to a given set of existing facilities
and with respect to other new facilities, so as to minimize the maximum weighted distance
between pairs of new facilities or between pairs of new and existing facilities.

Let Pi=(a,bj) i=1,..,n begivenpointsin R". Let Xj, j=1,.., m denotethe m
new facilities to be located.

Let wji beanonnegative weight associated with the distance between each Xj and P; for
i=1,..,nand j=1,..,m Let vjx beanonnegative weight associated with the distance
between each Xj and X for 1< j < k < m. Then the multifaciliity minimax location
problem with rectangular distance can be stated as.

max
min max { max Vik 110X, Xk), 1<isn w;i 11(X,Py) }.
X1 ... Xm 1<j<ksm 1<j<m

Thus each of the m new facilitiesis to be located with respect to the n existing facilities and
also with respect to the other new facilities. Thelocation of X; may depend on the location
of some point X because of the termsinvolving Vik.

New facility locations X; and Xk aresaid to belinked if vjk ispositive and not linked if vjk
iszero. Itisassumed that each new facility location X islinked with at least one other new
facility location, otherwise the location of X could be determined independently of the other
new facility locations by considering a separate problem.

New facility location X; and existing facility location P; are said to be linked if wjj is
positive and not linked if wjj iszero. If anew facility X;isnot linked to any existing
facility, then it must be linked to some new facility that islinked to some existing facility.
Otherwise, the set of al new facilities that are not linked to any existing facility can be located
at acommon point anywhere. Henceforth, we assume the multifacility location problem s
well formulated with respect to facilities being linked to one another. These assumptions

imply that there exist an optimal solution. For the convenience of the presentation, we assume
al the wjj and all the vjk are positive.
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Thetransformation T isapplied to the multifacility problem to obtain the following equivalent
problem:

max
min max { max ij Ioo(XJ, X k) 1<i<n W]| oo()(I PI|) }
X1..Xm 1<j<ksm 1<jsm

Thus the one dimensional multifacility minimax location problemsinx' and y' may be
considered independently. The subproblemin X' iswritten as.

' max
min max { max Vik | Xj =Xk |, 1sisn wji | x—a%|}.
X'1...Xm 1<j<ksm 1<jsm

Each one dimensional subproblem may be formulated as a linear programming problem. For
convenience, adual variable iswritten adjacent to each constraint.

min z dual variables
st. Xj— Xk +\Z_—'k20 1<j<k<sm fik
T ﬁ >0  l<j<ksm fi;
XIj+V\Z/_j'i > a 1<j<m, 1<i<n fijt
— X V\Z/_“ > —aj 1<j<m, 1<i<n fsij

Then the dual iswritten as follows:

max z Zalfljt - Z Za|fsu 1)

=1 =1 =1 =1
m
k=1 kZj k=1 k#j i=1
m m m m m n m n
Z Z fik/vik + Z Z fij/vik  + Z Z fij/wji  + Z Z fsilwji = 1(3)
=1 ko S =1 = P

all variables nonnegative.
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Add the two redundant constraints and the variable v:

m n
> > fsi = v (4)
j=1 =1
m n
- Z Z fijt = —-w 5)
=1 i=1

Congtraints (1), (2), (4), and (5) define a network flow problem. The set of nodesis{s, 1, .
..,mt}. Thenodes 1, ..., m constitute a complete network with directed arcs (j, k)
with flow fixand cost O for al j#k. Therearen paralel arcsfrom node sto each node |
with flow fgj, and cost —a'j. Therearen parallel arcs from node each node j to node t
with flow fijt, and cost aj. Thereisanarc (t,s) withflow v.

Constraints (2) are conservation of flow constraintsfor nodes j =1, ..., m. Constraint (4)
requires conservation of flow for node s, and constraint (5) requires conservation of flow
for node t.

Congtraint (3) multiplies the flow on each arc by aweight of either 1/vjk or L/w;i and
restricts the total weighted flow to equal 1.

The objective is to maximize the total cost of flow cycling through the network.

Figure 11 illustrates a network with m= 3 facilities to be located, and n = 2 existing
faciliites. Adjacent to each arcisthe arc cost.

S beasmple path from node s to node t. The conservation of flow constraints imply that
thereisaconstant flow, of say f,onpath S Let W(S) bethetota of al arc weights on the
path S thatis,

W(S) = z vk + z 1/wiji
KOS jics
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Constraint (3) impliesthat W(Sf=1, sothat f=1/W(S). Let C(S) bethetotal of all arc
cost onthe path S then the objective function valueis C(Sf = C(S/W(S). Therefore, the
objectiveisto find the path S of maximum cost to weight ratio C(S/W(S).

Figure 11.

The problem is solved by forming the Lagrangian with respect to constraint (3). LettingA be
the Lagrange multiplier for constraint (3), the Lagrangian problem adjusts the arc costs by
subtracting A  times the arc weight from the arc cost of each arc, and asks for a ssimple path of
maximum total adjusted arc cost. For asimplepath S from stot, the objective function of
the Lagrangian givestheratio C(S)/W(S) over the path S

Finding the simple path of maximum cost to weight ratio is accomplished as follows:

Set A1=0, andinitiate with i = 1. Adjust the arc costs of the Lagrangianby A ; and find
the maximum cost simple path, S from stot. Set Aj+1 = C(S)/W(S), and continue
until there isno improvement. It may be shownthat Aj+1> A at each step until
termination, and that the algorighm stops after afinite number of iterations. See Dearing and
Francis (1974).

The dual variable values (node labels) from the network solution give the optimal values of
thelocations: Xj j=1,...,n, andtheoptimal objective function value A* = Zy.
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The subproblemin y'j issolved inasimilar fashionfor yj j=1,...,n, andthe optimal
objective function value Z\y,.

Then the solution to the transformed problemis X = (x},y}) for j=1,...,n, andthe
optimal objective function value z = max( Zx, Zy).
The solution to the original problem is obtained by the inverse transformation T-1.

Alternatively, the constrained multifacility problemin R2 with |1 distances may be formulated

directly asalinear programming problem with 4n+ 4m constraints and 2m+ 1 variables.
Thisiswell within the capacity of modern LP solvers.
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Multifacility minimax location with Euclidean distance: M /P /w;/l> / max

The problem isto locate severa new facilities with respect to a given set of existing facilities
and with respect to other new facilities, so as to minimize the maximum weighted distance
between pairs of new facilities or between pairs of new and existing facilities. Let P; = (&,
bj) i=1,..,n begivenpointsin R". Let Xj, j=1,.., m denotethe m new facilitiesto
be located.

Let w;i beanonnegative weight associated with the distance between each Xj and P; for
i=1,..,nand j=1,..,m Let vjx beanonnegative weight associated with the distance
between each Xj and X for 1< j < k < m. Then the multifaciliity minimax location
problem with Euclidean distance can be stated as.

max
min max { max Vik 12(Xj, Xk), 1s<isn wjj [2(X,Pj) }.
X1 ... Xm 1<j<ksm 1<j<m

Thus each of the m new facilitiesis to be located with respect to the n existing facilities and
also with respect to the other new facilities. Thelocation of X; may depend on the location
of some point X because of the termsinvolving Vik.

We assume the multifacility location problem iswell formulated with respect to facilities being
linked to one another. These assumptions imply that there exist an optimal solution. Without
loss of generdity, we assume all the wji and all the vjk are positive.

The problem is equivalent to the problem with weighted distances squared:

max
min max { max V2jk 120X, XK)?, 1<i<n W2ji |2(Xj,Pi)2 }.
X1 ... Xm 1<j<ksm 1<jsm

and to the constrained problem:

min z
z = szklz(Xj,Xk)2 l<j<ksm
z = W3 1p(X,Pj)2 1<i<n, 1<j<m



59

Asin the onefacility model, write the Lagrangian of the constrained problem:

n m
Lz XA y) = 2= Y Ajk(z= VZkl2(G, X02) =Y > vij(z—w3ila(X,Pi)?)
1<<jsm i=1 j=1
then the Lagrangian dual is: M&X min  L(z X, A, y).
A y ZXj
The necessary conditions are:
n m
0 o
37 L@ X A y) = 0 implies 1 = Z Ajk + Z Z Vij (1)
1<<j<m i=1 j=1

These conditions eliminate the termsinvolving z from the Lagrangian.

m
0 N
ax L@ X A y) = 0 implies ) AjVvZik (X =Xi) + > vjwi (X —Pi) = 0(2)
1<<jsm =1
g—/\ Lz X, A, y) = 0 implies z = vZjklo(Xj, X)2 1 < j<k < m (3)
;— Lz X, A, y) = 0 implies z = w3 Ip(X,P))2 1<isn, 1<jsm (4)
y

Observe that equations (2) are a generaization of the necessary conditions for the squared
Euclidean distance problem whose solution is the center of gravity. Givenvaluesof A and y,

equations (2) may be solved for X by asystem of equations. If A and y are the optimal
values of the dual multipliers, then the solution X isthe optimal location.

Thisleadsto an iterative procedure for estimating A and y.
1. Set t=0. Setinitial valuesof A(t)jk and y(t)j;to 1.

2. Solvefor X(t)j using equations (2) and A(t)jk and y(t)ij .

3. Set A(t+1)jk = A()jkw;i 12(X(1)j, Pi)/U and y (t+1)ij = y()ij ik [2(X(1);, X(H/U,



4.
5.

n m
where U = 5 A(D)jk vik l20X@®)j, X0 = > > v @i wji [2(X(0);,P)).
1s<jsm i=1 j=1
Find z(t) asthe objective functionvalueusing X(t); j=1,..., m.

If astopping criteriaon z(t) ismet, stop, else, set t=t+ 1, and goto 2.
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Problems

1. Suppose four given point are located at (0,0), (0,10), (5,0), (12,6) and all w; are equal.
a. Find the gravity solution.
b. Usethegravity solution to intiate the iterative method and do 4 iterations.
c. Verify the solution by theillustration on page 12.



