One facility minimax location with Euclidean distance: $1 / P /-/ l_{\mathbf{2}} / \max$

Given n distinct points $P_{i}=\left(a_{i}, b_{i}\right)$ in the plane, the problem is to find a point $X=(x, y)$ that minimizes the maximum Euclidean distance from X to the given points.

Let $f(X)=\max _{1 \leq i \leq n} l_{2}\left(X, P_{i}\right)$. The problem is to minimize $f(X)$, i.e.,

$$
\min \max _{1 \leq i \leq n} l_{2}\left(X, P_{i}\right)
$$

A standard transformation is to write the problem as follows:

$$
\begin{array}{ll}
\min & z \\
\text { s.t. } l_{2}\left(X, P_{i}\right) \leq z \text { for } i=1, \ldots, n .
\end{array}
$$

This version of the problem has the geometric intrepretation of finding a circle with center X and minimum radius z so that all the given points P_{i} are in the circle, called the minimum covering circle problem. See Figure 1.

Figure 1

Notice that in the example of Figure 1, the minimum covering circle is determined by three points, P_{1}, P_{2}, and P_{3}. Alternatively, the minimum covering circle may be determined by two points, as in Figure 2.

Figure 2

An alternate geometric interpretation is to find the minimum radius z so that the circles centered at P_{i} with radius z have nonempty intersection X. See Figure 3.

Figure 3

Elzinga and Hearn (1972) give a geometric algorithm for solving the one center problem with Euclidean distances and they prove the correctness of the algorithm.

1. Choose any two points, P_{i} and P_{j}
2. Construct the circle whose diameter is $l_{2}\left(P_{i}, P_{j}\right)$.

If this circle contains all points, then the center of the circle is the optimal X.
Else, choose a point P_{k} outside the circle.
3. If the triangle determined by P_{i}, P_{j} and P_{k} is a right triangle or an obtuse triangle, rename the two points oposite the right angle or the obstuse angle as P_{i} and P_{j} and go to step 2.

Else, the three points determine an acute triangle. Construct the circle passing through the three points. (The center is the intersection of the perpendicular bisectors of two sides of the triangle.) If the circle contains all the points, stop, else, go to 4.
4. Choose some point P_{l} not in the circle, and let Q be the point among $\left\{P_{i}, P_{j}, P_{k}\right\}$ that is greatest distance from P_{l}. Extend the diameter through the point Q to a line that divides the plane into two half planes. Let the point R be the point among
$\left\{P_{i}, P_{j}, P_{k}\right\}$ that is in the half plane opposite P_{l}. With the points Q, R, and P_{l}, go to step 3.

Example: Consider the points $P_{1}, \ldots P_{5}$ as shown in Figure 4. Starting the algorithm with P_{2} and P_{4}, Figure 4 shows the circle whose diameter is the line segment from P_{2} to P_{4}.

Figure 4.

In Step 2, choose P_{1} as the point outside the circle. The points $\left\{P_{1}, P_{2}, P_{4}\right\}$ determine an acute triangle, and Figure 5 shows the circle determined by the points $\left\{P_{1}, P_{2}, P_{4}\right\}$.

Figure 5

The point P_{3} is not in the circle, and $Q=P_{1}$ is the point among $\left\{P_{1}, P_{2}, P_{4}\right\}$ that is greatest distance from P_{3}. Figure 5 shows the line extended from the diameter through $Q=$ P_{1} and that $R=P_{2}$ is the point among $\left\{P_{1}, P_{2}, P_{4}\right\}$ that is in the half plane opposite P_{3}. With the points $\left\{Q, R, P_{3}\right\}=\left\{P_{1}, P_{2}, P_{3}\right\}$, go to step 3 .
Figure 6 shows the circle determined by the points $\left\{P_{1}, P_{2}, P_{3}\right\}$, which includes all points.

Figure 6

An alternative algorithm is given by the Chrystal-Peirce Algorithm found in Sylvester (1860), and Chrystal (1885):
0 . Set $k=1$. Construct a large circle which covers all the points P_{i}, and which passes through two points P_{s} and P_{t}. Define X_{k} as the center of the circle, and $S_{k}=\left\{P_{s}, P_{t}\right\}$.

1. Let $\angle P_{s} P_{r} P_{t}=\min \left\{\angle P_{s} P_{j} P_{t}: P_{j} \notin S_{k}\right\}$. If $\angle P_{s} P_{r} P_{t}$ is obtuse, stop. The minimum circle has diameter $\frac{1}{2} l_{2}\left(P_{s}, P_{t}\right)$, and $X=\frac{1}{2}\left(P_{s}+P_{t}\right)$. Else, go to 2 .
2. Compute the center of the circle, X_{k+1} passing through P_{s}, P_{r}, and P_{t}. If the triangle $\Delta P_{S} P_{r} P_{t}$ is not obtuse, stop; $X=X_{k+1}$. Else, drop the point among P_{S}, P_{r}, and P_{t} with the obtuse angle. Rename the remaining points P_{s} and P_{t}, set $S_{k+1}=\left\{P_{s}, P_{t}\right\}$, increment k and go to 1 .

This is a primal algorithm in that the current circle always covers all the given points, and the radius decreases at each step.

The Kuhn-Tucker conditions for the minimax location problem:

For a general nonlinear programming problem with f and g_{i} convex, continuous and differentiable:

```
min}f(x
s.t. }\quad\mp@subsup{g}{i}{}(x)\geq0i=1,\ldots,
```

the Kuhn-Tucker optimality conditions state that x is an optimal solution if and only if, there exists λ_{i} such that:

$$
\begin{aligned}
& \nabla f(x)=\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x), \\
& g_{i}(x) \geq 0 \\
& \begin{array}{ll}
\lambda_{i} g_{i}(x)=0 & i=1, \ldots, n \\
\lambda_{i} \geq 0 & i=1, \ldots, n, \\
& i=1, \ldots, n .
\end{array}
\end{aligned}
$$

Observe that the minimax Euclidean distance problem is equivalent to the minimax squared Eulclidean distance problem:

$$
\min \max _{1 \leq i \leq n} l_{2}\left(X, P_{i}\right)^{2}
$$

which is written in constrained form as:
$\min z$
s.t. $\quad z \geq\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2} \quad$ for $i=1, \ldots, n$.

Then the Kuhn-Tucker state that (x, y) and z is an optimal solution if and only if there exists $\lambda_{i} \geq 0$ such that the following conditions hold:

$$
\begin{align*}
& 1=\sum_{i=1}^{n} \lambda_{i}, \tag{1}\\
& 0=\sum_{i=1}^{n} \lambda_{i}\left(x-a_{i}\right) \quad \text { which gives } x=\frac{\Sigma_{i} \lambda_{i} a_{i}}{\Sigma_{i} \lambda_{i}}=\Sigma_{i} \lambda_{i} a_{i}, \tag{2}\\
& 0=\sum_{i=1}^{n} \lambda_{i}\left(y-b_{i}\right) \text { which gives } y=\frac{\sum_{i} \lambda_{i} b_{i}}{\Sigma_{i} \lambda_{i}}=\Sigma_{i} \lambda_{i} b_{i}, \tag{3}\\
& z^{*} \geq\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2} \text { for } i=1, \ldots, n, \text { and } \tag{4}\\
& \lambda_{i}\left(z^{*}-\left(x-a_{i}\right)^{2}+\left(y-b_{i}\right)^{2}\right)=0 \text { for } i=1, \ldots, n . \tag{5}
\end{align*}
$$

These conditions are interpreted as follows: Conditions (1), (2), and (3) imply that the center of the circle, $X=(x, y)$, is a convex combination of the given points $P_{i}=\left(a_{i}, b_{i}\right)$, but conditions (5) state that the only λ_{i} allowed to be positive are associated with points P_{i} that are on the circle, i.e., where conditions (4) hold at equality. Thus, X is a convex combination of those points P_{i} that lie on the circle. Condition (4) requires all points P_{i} to lie inside or on the circle centered at X with radius z.

A theorem of Caratheodory states that to express a given point X in R^{n} as a convex combination of a given set of points, requires at most $n+1$ of the given points. In the plane, with $n=2$, this theorem implies that to express the center X of the minimum covering circle as a convex combination of the given points P_{i} requires at most 3 of the given points.

The minimax Euclidean distance problem requires either 2 or 3 points to specify the minimum covering circle.

A dual of the minimax Euclidean distance problem: min $\max _{1 \leq i \leq n} l_{2}\left(X, P_{i}\right)$.

Consider the equivalent problem: min $\max _{1 \leq i \leq n} l_{2}\left(X, P_{i}\right)^{2}$ in which the distance is squared. $1 \leq i \leq n$

This problem is equivalent to $\min z$

$$
\text { s.t. } \quad z \geq l_{2}\left(X, P_{i}\right)^{2} \quad i=1, \ldots, n .
$$

The Lagrangian for this problem may be written as

$$
\begin{aligned}
L(z, x, \lambda) & =z-\sum_{i=1}^{n} \lambda_{i}\left(z-l_{2}\left(X, P_{i}\right)^{2}\right) \\
= & z\left(1-\sum_{i=1}^{n} \lambda_{i}\right)+\sum_{i=1}^{n} \lambda_{i} l_{2}\left(X, P_{i}\right)^{2}
\end{aligned}
$$

The Lagrangian dual is:

$$
\max _{\lambda \geq 0} \min _{\mathrm{z} X} z\left(1-\sum_{i=1}^{n} \lambda_{i}\right)+\sum_{i=1}^{n} \lambda_{i} l_{2}\left(X, P_{i}\right)^{2}
$$

Observe that if $1-\sum_{i=1}^{n} \lambda_{i}<0$, then as $z \rightarrow+\infty, L(z, x, \lambda) \rightarrow-\infty$, and if $1-\sum_{i=1}^{n} \lambda_{i}>0$, then as $z \rightarrow-\infty, L(z, x, \lambda) \rightarrow-\infty$, so that in either case, the dual has no maximum. Thus the Lagrangian dual may be written as:

$$
\begin{array}{ll}
\max & \min _{X} \\
\sum_{i=1}^{n} \lambda_{i} l_{2}\left(X, P_{i}\right)^{2} \\
\text { s.t. } & \sum_{i=1}^{n} \lambda_{i}=1, \text { and } \lambda \geq 0 .
\end{array}
$$

Since $\sum_{i=1}^{n} \lambda_{i} l_{2}\left(X, P_{i}\right)^{2}$ is strictly convex, the minimum occurs if and only if the necessary conditions are met, i.e., $\sum_{i=1}^{n} \lambda_{i}\left(X-P_{i}\right)=0$, or $X=\sum_{i=1}^{n} \lambda_{i} P_{i}$. Thus the minimum can be replaced with the constraint $X=\sum_{i=1}^{n} \lambda_{i} P_{i}$.

Therefore the dual is: $\max \sum_{i=1}^{n} \lambda_{i} l_{2}\left(X, P_{i}\right)^{2}$
s.t. $\quad \sum_{i=1}^{n} \lambda_{i}=1$,
$X=\sum_{i=1}^{n} \lambda_{i} P_{i}$,
$\lambda \geq 0$.

This dual has the following interpretation. Assume the given points P_{i} are rigidly interconnected in a weightless lamina. Consider the dual variable λ_{i} as a weight to be assigned to the points P_{i}. The center of gravity of the points P_{i} with weights λ_{i} is $X=\sum_{i=1}^{n} \lambda_{i} P_{i}$. The objective function gives the moment of inertia of this system of points and weights about the center of gravity. The constraint $\sum_{i=1}^{n} \lambda_{i}=1$ normalizes the assigned weights to 1 . Thus the dual problem is to assign nonnegative weights λ_{i} to the points P_{i} in order to maximize the moment of inertia of this system about its center of gravity X.
The Kuhn-Tucker conditions state that the moment of inertia is maximized by assigning positive weight only to the points P_{i} that are at the maximum distance from the center X.

Another dual of the minimax Euclidean distance problem has a quadratic objective function and linear constraints. Standard quadratic programming approaches may be applied to its solution.

One facility minimax location with weighted Euclidean distance: $1 / P / w_{i} / l_{\mathbf{2}} /$ \max

Given distinct points $P_{i}=\left(a_{i}, b_{i}\right)$ in the plane, and positive weights w_{i} for $i=1, \ldots n$, the problem is to find a point $X=(x, y)$ that minimizes the maximum weighted Euclidean distance from X to the given points. Let $f(X)=\max _{1 \leq i \leq n} w_{i} l_{2}\left(X, P_{i}\right)$. The problem is to minimize $f(X)$, i.e.,

$$
\min \max _{1 \leq i \leq n} w_{i} l_{2}\left(X, P_{i}\right)
$$

For two points P_{s} and P_{t}, let $L\left(P_{s}, P_{t}\right)=\left\{X: w_{s} l_{2}\left(X, P_{s}\right)=w_{t} l_{2}\left(X, P_{t}\right)\right\}$, that is, $L\left(P_{s}, P_{t}\right)$ is the set of points whose weighted distance to P_{S} equals the weighted distance to P_{t}. If the ratio $r=\frac{w_{t}}{w_{s}}=1$, then $L\left(P_{s}, P_{t}\right)$ is a straight line, i.e., the perpendicular bisector of the line joining P_{s} and P_{t}. If $r \neq 1$, then $L\left(P_{s}, P_{t}\right)$ is a circle with radius $\frac{r l_{2}\left(P_{s}, P_{t}\right)}{\left|1-r^{2}\right|}$, and center $\frac{P_{s}-r^{2} P_{t}}{1-r^{2}}$.

Figure 7 shows three points $P_{1}=(0,0), P_{2}=(3,0)$, and $P_{3}=(0,4)$ with weights $w_{1}=6$, $w_{2}=8, w_{3}=3$, and the sets $L\left(P_{1}, P_{2}\right), L\left(P_{1}, P_{3}\right)$, and $L\left(P_{2}, P_{3}\right)$ intersecting at a common point. The common point is the solution to the minimax location problem on the points P_{1}, P_{2}, and P_{3} with weighted Euclidean distance.

The following two results show how to determine the optimal solution for the 2 and 3 point weighted minimax location problems.

Result 1: For a weighted minimax location problem with two points P_{s} and P_{t}, the optimal solution X lies at the intersection of the line between P_{s} and P_{t}, and the set $L\left(P_{s}, P_{t}\right)$. Result 2: For a weighted minimax location problem with three points P_{s}, P_{t}, and P_{u}, either the optimal solution is determined by one of the pair of points: P_{S} and P_{t}, or P_{s} and P_{u}, or P_{t} and P_{u}, or the optimal solution is determined by all three points in which case X lies at the intersection of $L\left(P_{s}, P_{t}\right), L\left(P_{s}, P_{u}\right)$, and $L\left(P_{t}, P_{u}\right)$.

An algorithm for the weighted minimax Euclidean distance problem is given as follows:

1. Choose any two points P_{S} and P_{t}. Solve the weighted minimax location problem with P_{s} and P_{t} for X and $z=w_{s} l_{2}\left(X, P_{s}\right)$ using Result 1.
2. If $w_{i} l_{2}\left(X, P_{i}\right) \leq z$ for all P_{i}, stop. Else select a point P_{u} such that $w_{u} l_{2}\left(X, P_{u}\right)>z$ and go to 3 .
3. Solve the weighted minimax location problem with P_{s}, P_{t}, and P_{u}, for X and z using Result 2.
4. If X and z are determined by two points, call them P_{s} and P_{t} and go to 2 .
5. Else, X and z are determined by three points. If $w_{i} l_{2}\left(X, P_{i}\right) \leq z$ for all P_{i}, stop. Otherwise choose P_{v} such that $w_{v} l_{2}\left(X, P_{v}\right)>z$.
6. Using P_{S}, P_{t}, P_{u} and P_{v}, choose all combinations of two points and solve for X and z using Result 1 , and choose all combinations of three points and solve for X and z usint Result 2. If X and z are determined by two points, call them P_{s} and P_{t} and go to 2 . If X and z are determined by three points, call them P_{s}, P_{t}, and P_{u} and go to 5 .

This is a finite algorithm, however in the worst case, the minimax problem must be solved on 4 points $C(n, 4)$ times. Elzinga and Hearn give heuristic improvements and alternate methods.

Drezner and Wesolowsky (1980) give a similar algorithm for the weighted minimax location problem with l_{p} distances

General Results for minimax location

The following general results are from Francis (1967). The first result gives a lower bound on the objective function value.

Property 2-1: Define $b_{i j}=\frac{w_{i} w_{j}}{w_{i}+w_{j}} d\left(P_{i}, P_{j}\right)$ and $b_{s t}=\max _{1 \leq i<j \leq n} b_{i j}$. Then $b_{s t} \leq f\left(X^{*}\right)$.
Proof: $b_{s t}=\frac{w_{s} w_{t}}{w_{s}+w_{t}} d\left(P_{s}, P_{t}\right) \leq \frac{w_{t}}{w_{s}+w_{t}} w_{s} d\left(P_{s}, X^{*}\right)+\frac{w_{s}}{w_{s}+w_{t}} w_{t} d\left(X^{*}, P_{t}\right)$

$$
\leq \frac{w_{t}}{w_{s}+w_{t}} f\left(X^{*}\right)+\frac{w_{s}}{w_{s}+w_{t}} f\left(X^{*}\right)=f\left(X^{*}\right) .
$$

Corrollary 2-1: The function f equals the lower bound $b_{s t}$ at a point X if and only if

$$
\begin{align*}
& d\left(P_{s}, P_{t}\right)=d\left(P_{s}, X^{*}\right)+d\left(X^{*}, P_{t}\right) \tag{1}\\
& w_{s} d\left(P_{s}, X^{*}\right)=w_{t} d\left(X^{*}, P_{t}\right), \text { and } \\
& w_{i} d\left(X^{*}, P_{i}\right) \leq b_{s t} \text { for } i=1, \ldots, m \quad i \neq s, t
\end{align*}
$$

Corrollary 2-2: Given the lower bound $b_{s t}$, define $X=\frac{w_{s}}{\left(w_{s}+w_{t}\right)} P_{s}+\frac{w_{t}}{\left(w_{s}+w_{t}\right)} P_{t}$. If $w_{i} d\left(X, P_{i}\right) \leq b_{s t}$ for $i=1, \ldots, m \quad i \neq s, t$, then X minimizes f.

Proof: X is a convex combination of P_{s} and P_{t} so that

$$
d\left(P_{S}, P_{t}\right)=d\left(P_{S}, X^{*}\right)+d\left(X^{*}, P_{t}\right) .
$$

Also, $w_{s} d\left(P_{s}, X^{*}\right)=\frac{w_{t}}{w_{s}+w_{t}} w_{s} d\left(P_{s}, P_{t}\right)=b_{\mathrm{st}}$, and likewise

$$
w_{t} d\left(X^{*}, P_{t}\right)=b_{\mathrm{st}} .
$$

Property 2-2: If X^{*} minimizes f, then there are at least two given points P_{i} and P_{j} such that

$$
f\left(X^{*}\right)=w_{i} d\left(X, P_{i}\right)=w_{j} d\left(X, P_{j}\right) .
$$

For the Euclidean distance minimax location problem with all $w_{i}=1$, observe that the lower bound is not necessarily tight. Consider the given points $P_{1}=(5,0), P_{2}=(-3,4)$, and P_{3} $=(-3,-4)$. Then $b_{12}=b_{13}=\frac{1}{2} l_{2}\left(P_{1}, P_{2}\right)=\frac{1}{2} l_{2}\left(P_{1}, P_{3}\right)=2 \sqrt{5}$ and $b_{23}=\frac{1}{2} l_{2}\left(P_{2}, P_{3}\right)$ $=4$, so that $b_{s t}=2 \sqrt{5}$. However, the optimal location is $X^{*}=(0,0)$ with $f\left(X^{*}\right)=5>$ $b_{s t}$.

One facility minimax location with rectangular distance: $\quad 1 / P / w_{\mathrm{i}} / l_{1} / \max$

Given distinct points $P_{i}=\left(a_{i}, b_{i}\right)$ in the plane, and positive weights w_{i} for $i=1, \ldots, n$. The problem is to find a point $X=(x, y)$ that minimizes the maximum weighted rectangular distance from X to the given points. Recall that $l_{1}\left(X, P_{i}\right)=\left|x-a_{i}\right|+\left|y-b_{i}\right|$.

Let $f(X)=\max _{1 \leq i \leq n} w_{i} l_{1}\left(X, P_{i}\right)$. The problem is to minimize $f(X)$, i.e.,

$$
\min \max _{1 \leq i \leq n} w_{i} l_{1}\left(X, P_{i}\right)
$$

The set of points of equal distance z from a given point P_{i} in R^{2} is a "diamond" as shown in Figure 8.

Figure 8.
The approach is to transform the problem with rectangular distances into an equivalent problem using l_{∞} distances where $l_{\infty}\left(X, P_{i}\right)=\max \left\{\left|x-a_{i}\right|,\left|y-b_{i}\right|\right\}$. The set of points of equal l_{∞} distance from a given point P_{i} in R^{2} is a square as shown in Figure 9.

Figure 9.
Consider a transformation T that rotates the coordinate axes clockwise through 45 degrees.
The transformation T is given by the nonsingular matrix $T=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$.

Property 2-3: $l_{1}\left(X, P_{i}\right)=\sqrt{2} l_{\infty}\left(T(X), T\left(P_{i}\right)\right)$.
Proof: $\sqrt{2} l_{\infty}\left(T(X), T\left(P_{i}\right)\right)=\sqrt{2} \max \left\{\frac{1}{\sqrt{2}}|x+y-a-b|, \frac{1}{\sqrt{2}}|-x+y+a-b|\right\}$
$=\max \{(x+y-a-b),(-x-y+a+b),(-x+y+a-b),(x-y-a+b)\}$
$=\max \{(x-a+y-b),(x-a-y+b),(-x+a+y-b),(-x+a-y+b)\}$ $=|x-a|+|y-b|=l_{1}\left(X, P_{i}\right)$.

Property 2-4: X is an optimal solution to $\min \max _{1 \leq i \leq n} w_{i} l_{1}\left(X, P_{i}\right)$ with objective function value z if and only if $T(X)$ is an optimal solution to $\min \max _{1 \leq i \leq n} w_{i} l_{\infty}\left(T(X), T\left(P_{i}\right)\right)$ with objective function value $\sqrt{2} z$.

The approach is to solve the problem $\min \max _{1 \leq i \leq n} w_{i} l_{\infty}\left(T(X), T\left(P_{i}\right)\right)$.

Let $T(X)=X^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ and $T\left(P_{i}\right)=P_{i}^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right)$.

Then the problem may be written as

$$
\begin{aligned}
& \min \max _{1 \leq i \leq n} w_{i}\left(\max \left\{\left|x^{\prime}-a_{i}^{\prime}\right|,\left|y^{\prime}-b_{i}^{\prime}\right|\right\}\right) \\
& \min \max \left\{\max _{1 \leq i \leq n} w_{i}\left|x^{\prime}-a_{i}^{\prime}\right|, \max _{1 \leq i \leq n} w_{i}\left|y^{\prime}-b_{i}^{\prime}\right|\right\}
\end{aligned}
$$

from which two subproblems may be defined in the variables x^{\prime} and y^{\prime} respectively.
$\mathrm{P}\left(x^{\prime}\right): \quad \min \max _{1 \leq i \leq n} w_{i}\left|x^{\prime}-a_{i}^{\prime}\right|, \quad$ and $\quad \mathrm{P}\left(y^{\prime}\right): \min \max _{1 \leq i \leq n} w_{i}\left|y^{\prime}-b_{i}^{\prime}\right|$

Property 2-5: If x^{\prime} is an optimal solution to subproblem $\mathrm{P}\left(x^{\prime}\right)$ with objective function value z_{x}^{\prime} and if y^{\prime} is an optimal solution to subproblem $\mathrm{P}\left(y^{\prime}\right)$ with objective function value $z^{\prime} y$, then $X^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ is an optimal solution to $\min \max w_{i} l_{\infty}\left(T(X), T\left(P_{i}\right)\right)$ with objective function $1 \leq i \leq n$
value $\max \left(z_{x}^{\prime}, z_{y}^{\prime}\right)$.

How to solve $\mathrm{P}\left(x^{\prime}\right)$: Write the equivalent constrained problem:
$\min z_{x}^{\prime}$
s.t. $\left|x-a_{i}^{\prime}\right| \leq \frac{z_{x}^{\prime}}{w_{i}}$ for $i=1, \ldots, n$.
and the equivalent linear programming problem:

$$
\begin{aligned}
& \min z_{x}^{\prime} \\
& \text { s.t. } x-a_{i}^{\prime} \leq \frac{z_{x}^{\prime}}{w_{i}} \text { for } i=1, \ldots, n . \\
&-x+a_{i}^{\prime} \leq \frac{z_{x}^{\prime}}{w_{i}} \text { for } i=1, \ldots, n
\end{aligned}
$$

From Property 2-1, a lower bound is given by

$$
\max _{1 \leq i<j \leq n} \frac{w_{i} w_{j}}{w_{i}+w_{j}}\left|a_{i}^{\prime}-a_{j}^{\prime}\right|=\frac{w_{s} w_{t}}{w_{s}+w_{t}}\left|a_{s}^{\prime}-a_{t}^{\prime}\right| \text { for some } s \text { and } t .
$$

Using properties of the linear program, this lower bound may be shown to be tight for the minimax location problem $\mathrm{P}\left(x^{\prime}\right)$. Thus the optimal solution has

$$
z_{x}^{\prime}=\frac{w_{s} w_{t}}{w_{s}+w_{t}}\left|a_{s}^{\prime}-a_{t}^{\prime}\right| \quad \text { and } x^{\prime}=\frac{w_{s} a_{s}^{\prime}+w_{t} a_{t}^{\prime}}{w_{s}+w_{t}} .
$$

For the subproblem $\mathrm{P}\left(y^{\prime}\right)$: min $\max _{1 \leq i \leq n} w_{i}\left|y^{\prime}-b_{i}^{\prime}\right|$ a lower bound is given by

$$
\max _{1 \leq i<j \leq n} \frac{w_{i} w_{j}}{w_{i}+w_{j}}\left|b_{i}^{\prime}-b_{j}^{\prime}\right|=\frac{w_{p} w_{q}}{w_{p}+w_{q}}\left|b_{p}^{\prime}-b_{q}^{\prime}\right| \text { for some } p \text { and } q,
$$

which is tight. Thus the optimal solution has

$$
z_{y}^{\prime}=\frac{w_{p} w_{q}}{w_{p}+w_{q}}\left|b_{p}^{\prime}-b_{q}^{\prime}\right| \quad \text { and } y^{\prime}=\frac{w_{p} b_{p}^{\prime}+w_{q} b_{q}^{\prime}}{w_{p}+w_{q}} .
$$

Then an optimal solution to the problem: $\min \max _{1 \leq i \leq n} w_{i} l_{\infty}\left(X^{\prime}, P^{\prime}{ }_{i}\right)$
is $X^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ and $z^{\prime}=\max \left(z_{x}^{\prime}, z_{y}^{\prime} y\right)$.

If $z_{x}^{\prime}=z^{\prime} y$, then $X^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ is the unique solution. If $z_{x}^{\prime}>z_{y}^{\prime}$, then all $\left(x^{\prime}, y^{\prime}\right)$ such that $w_{i}\left|y^{\prime}-b_{i}^{\prime}\right| \leq z_{x}^{\prime}$ are alternative optimal solutions.

The inequality is equivalent to $b_{i}^{\prime}-z^{\prime}{ }_{x} / w_{i} \leq y^{\prime} \leq b_{i}^{\prime}+z_{x}^{\prime} / w_{i}$ for all $i=1, \ldots, n$, which is equivalent to $\max _{i}\left\{b_{i}^{\prime}-z_{x}^{\prime} / w_{i}\right\} \leq y^{\prime} \leq \min _{i}\left\{b_{i}^{\prime}+z_{x}^{\prime} / w_{i}\right\}$.
This shows that the alternative solutions are given by an interval in y^{\prime}.
If $z_{y}^{\prime}>z_{x}^{\prime}$, then all $\left(x^{\prime}, y^{\prime}\right)$ such that $w_{i}\left|x^{\prime}-a_{i}^{\prime}\right| \leq z_{y}^{\prime}$ are alternate optimal solutions, which can be expressed as an interval in x^{\prime} similar to the above.

Figure 10 shows an example with three points and all weights equal 1. The optimal solution is determined by P_{1} and P_{2}. Alternative solutions are indicated by the vertical line segment adjacent to X.

Figure 10.

Finally, optimal solutions to $\min \max _{1 \leq i \leq n} w_{i} l_{1}\left(X, P_{i}\right)$ are given by $X=T^{-1}\left(X^{\prime}\right)$ and $z=\frac{1}{\sqrt{2}} z^{\prime}$.

An alternative approach for the rectangular distance minimax location problem is given as follows.
Property 2-1 shows that the expression

$$
\max _{1 \leq i<j \leq n} \frac{w_{i} w_{j}}{w_{i}+w_{j}} l_{1}\left(P_{i}, P_{j}\right)=\frac{w_{s} w_{t}}{w_{s}+w_{t}} l_{1}\left(P_{s}, P_{t}\right)=b_{s t} \text { for some } s \text { and } t
$$

is a lower bound for the objective function value. This bound may be shown to be tight, and one optimal solution X is given by $X=\frac{w_{s} P_{s}+w_{t} P_{t}}{w_{s}+w_{t}}$. Alternative solutions are given by the set $\left\{X: w_{i} l_{1}\left(X, P_{i}\right) \leq b_{s t}\right\}$. Explicit expressions may be given that determine and interval of alternative solutions.

Multifacility minimax location with rectangular distance: $\quad M / P / w_{\mathrm{i}} / l_{1} / \max$

The problem is to locate several new facilities with respect to a given set of existing facilities and with respect to other new facilities, so as to minimize the maximum weighted distance between pairs of new facilities or between pairs of new and existing facilities.
Let $P_{i}=\left(a_{i}, b_{i}\right) \quad i=1, \ldots, n$ be given points in R^{n}. Let $X, j=1, \ldots, m$ denote the m new facilities to be located.

Let $w_{j i}$ be a nonnegative weight associated with the distance between each X_{j} and P_{i} for $i=1, \ldots, n$ and $j=1, \ldots, m$. Let $v_{j k}$ be a nonnegative weight associated with the distance between each X_{j} and X_{k} for $1 \leq j<k \leq m$. Then the multifaciliity minimax location problem with rectangular distance can be stated as:

$$
\min _{X_{1} \ldots X_{m}} \max \left\{\max _{1 \leq j<k \leq m} v_{j k} l_{1}\left(X_{j}, X_{k}\right), \underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}{\max _{j i}} w_{j i} l_{1}\left(X, P_{i}\right)\right\} .
$$

Thus each of the m new facilities is to be located with respect to the n existing facilities and also with respect to the other new facilities. The location of X_{j} may depend on the location of some point X_{k} because of the terms involving $v_{j k}$.

New facility locations X_{j} and X_{k} are said to be linked if $v_{j k}$ is positive and not linked if $v_{j k}$ is zero. It is assumed that each new facility location X_{j} is linked with at least one other new facility location, otherwise the location of X_{j} could be determined independently of the other new facility locations by considering a separate problem.

New facility location X_{j} and existing facility location P_{i} are said to be linked if $w_{j i}$ is positive and not linked if $w_{j i}$ is zero. If a new facility X_{j} is not linked to any existing facility, then it must be linked to some new facility that is linked to some existing facility. Otherwise, the set of all new facilities that are not linked to any existing facility can be located at a common point anywhere. Henceforth, we assume the multifacility location problem is well formulated with respect to facilities being linked to one another. These assumptions imply that there exist an optimal solution. For the convenience of the presentation, we assume all the $w_{j i}$ and all the $v_{j k}$ are positive.

The transformation T is applied to the multifacility problem to obtain the following equivalent problem:

$$
\min _{X_{1}^{\prime} \ldots X_{m}^{\prime}} \max \left\{\max _{1 \leq j<k \leq m} v_{j k} l_{\infty}\left(X_{j}^{\prime}, X_{k}^{\prime}\right), \underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}{\max } w_{j i} l_{\infty}\left(X^{\prime}, P_{i}^{\prime}\right)\right\}
$$

Thus the one dimensional multifacility minimax location problems in x^{\prime} and y^{\prime} may be considered independently. The subproblem in x^{\prime} is written as:

$$
\min _{x^{\prime}{ }_{1} \ldots x_{m}^{\prime}} \max \left\{\max _{1 \leq j<k \leq m} v_{j k}\left|x_{j}^{\prime}-x_{k}^{\prime}\right|, \underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}{\max } w_{j i}\left|x^{\prime}-a_{i}^{\prime}\right|\right\} .
$$

Each one dimensional subproblem may be formulated as a linear programming problem. For convenience, a dual variable is written adjacent to each constraint.

$$
\left.\begin{array}{llc}
\min & z^{\prime} & \text { dual varia } \\
\text { s.t. } & x_{j}^{\prime}-x^{\prime} k+\frac{z^{\prime}}{v_{j k}} \geq 0 & 1 \leq j<k \leq m
\end{array}\right) f_{j k}
$$

Then the dual is written as follows:

$$
\begin{equation*}
\max \sum_{j=1}^{m} \sum_{i=1}^{n} a^{\prime}{ }_{i} f_{i j t}-\sum_{j=1}^{m} \sum_{i=1}^{n} a^{\prime}{ }_{i} f_{s i j} \tag{1}
\end{equation*}
$$

s.t. $\sum_{k=1}^{m} f_{j k}-\sum_{k=1}^{m} f_{k j}+\sum_{i=1}^{n} f_{i j t}-\sum_{i=1}^{n} f_{s i j}=0 \quad 1 \leq j \leq m$,

$$
\sum_{j=1}^{m} \sum_{k>j}^{m} f_{j k} / v_{j k}+\sum_{j=1}^{m} \sum_{k>j}^{m} f_{k j} / v_{j k}+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{i j t} / w_{j i}+\sum_{j=1}^{m} \sum_{i=1}^{n} f_{s j i} / w_{j i}=1(3)
$$

all variables nonnegative.

Add the two redundant constraints and the variable v :

$$
\begin{align*}
\sum_{j=1}^{m} \sum_{i=1}^{n} f_{s j i} & =v \tag{4}\\
- & \sum_{j=1}^{m} \sum_{i=1}^{n} f_{i j t}=-v . \tag{5}
\end{align*}
$$

Constraints (1), (2), (4), and (5) define a network flow problem. The set of nodes is $\{s, 1$, . $\ldots, m, t\}$. The nodes $1, \ldots, m$ constitute a complete network with directed arcs (j, k) with flow $f_{j k}$ and cost 0 for all $j \neq k$. There are n parallel arcs from node s to each node j with flow $f_{s i j}$, and cost $-a_{i}^{\prime}$. There are n parallel arcs from node each node j to node t with flow $f_{i j t}$, and cost a_{i}^{\prime}. There is an $\operatorname{arc}(t, s)$ with flow v.

Constraints (2) are conservation of flow constraints for nodes $j=1, \ldots, m$. Constraint (4) requires conservation of flow for node s, and constraint (5) requires conservation of flow for node t.

Constraint (3) multiplies the flow on each arc by a weight of either $1 / v_{j k}$ or $1 / w_{j i}$ and restricts the total weighted flow to equal 1.

The objective is to maximize the total cost of flow cycling through the network.

Figure 11 illustrates a network with $m=3$ facilities to be located, and $n=2$ existing faciliites. Adjacent to each arc is the arc cost.

Let S be a simple path from node s to node t. The conservation of flow constraints imply that there is a constant flow, of say f, on path S. Let $W(S)$ be the total of all arc weights on the path S, that is,

$$
W(S)=\sum_{k j \in S} 1 / v_{j k}+\sum_{j i \in S} 1 / w_{j i} .
$$

Constraint (3) implies that $W(S) f=1$, so that $f=1 / W(S)$. Let $C(S)$ be the total of all arc cost on the path S, then the objective function value is $C(S) f=C(S) / W(S)$. Therefore, the objective is to find the path S of maximum cost to weight ratio $C(S) / W(S)$.

Figure 11.

The problem is solved by forming the Lagrangian with respect to constraint (3). Letting λ be the Lagrange multiplier for constraint (3), the Lagrangian problem adjusts the arc costs by subtracting λ times the arc weight from the arc cost of each arc, and asks for a simple path of maximum total adjusted arc cost. For a simple path S from s to t, the objective function of the Lagrangian gives the ratio $C(S) / W(S)$ over the path S.

Finding the simple path of maximum cost to weight ratio is accomplished as follows: Set $\lambda_{1}=0$, and initiate with $i=1$. Adjust the arc costs of the Lagrangian by λ_{i} and find the maximum cost simple path, S_{i} from s to t. Set $\lambda_{i+1}=C\left(S_{i}\right) / W\left(S_{i}\right)$, and continue until there is no improvement. It may be shown that $\lambda_{i+1}>\lambda_{i}$ at each step until termination, and that the algorighm stops after a finite number of iterations. See Dearing and Francis (1974).

The dual variable values (node labels) from the network solution give the optimal values of the locations: $x_{j}^{\prime} j=1, \ldots, n$, and the optimal objective function value $\lambda^{*}=z_{x}^{\prime}$.

The subproblem in y_{j}^{\prime} is solved in a similar fashion for $y_{j}^{\prime} j=1, \ldots, n$, and the optimal objective function value z_{y}^{\prime}.

Then the solution to the transformed problem is $X_{j}^{\prime}=\left(x_{j}^{\prime}, y_{j}^{\prime}\right)$ for $j=1, \ldots, n$, and the optimal objective function value $z^{\prime}=\max \left(z_{x}^{\prime}, z_{y}^{\prime}\right)$.
The solution to the original problem is obtained by the inverse transformation T^{-1}.

Alternatively, the constrained multifacility problem in R^{2} with l_{1} distances may be formulated directly as a linear programming problem with $4 n+4 m$ constraints and $2 m+1$ variables. This is well within the capacity of modern LP solvers.

Multifacility minimax location with Euclidean distance: $\quad M / P / w_{\mathrm{i}} / \boldsymbol{l}_{\mathbf{2}} / \max$

The problem is to locate several new facilities with respect to a given set of existing facilities and with respect to other new facilities, so as to minimize the maximum weighted distance between pairs of new facilities or between pairs of new and existing facilities. Let $P_{i}=\left(a_{i}\right.$, $\left.b_{i}\right) i=1, \ldots, n$ be given points in R^{n}. Let $X_{j}, j=1, \ldots, m$ denote the m new facilities to be located.

Let $w_{j i}$ be a nonnegative weight associated with the distance between each X_{j} and P_{i} for $i=1, \ldots, n$ and $j=1, \ldots, m$. Let $v_{j k}$ be a nonnegative weight associated with the distance between each X_{j} and X_{k} for $1 \leq j<k \leq m$. Then the multifaciliity minimax location problem with Euclidean distance can be stated as:

$$
\min _{X_{1} \ldots X_{m}} \max \left\{\max _{1 \leq j<k \leq m} v_{j k} l_{2}\left(X_{j}, X_{k}\right), \underset{1 \leq i \leq n}{\max } w_{j i} l_{2}\left(X, P_{i}\right)\right\}
$$

Thus each of the m new facilities is to be located with respect to the n existing facilities and also with respect to the other new facilities. The location of X_{j} may depend on the location of some point X_{k} because of the terms involving $v_{j k}$.

We assume the multifacility location problem is well formulated with respect to facilities being linked to one another. These assumptions imply that there exist an optimal solution. Without loss of generality, we assume all the $w_{j i}$ and all the $v_{j k}$ are positive.

The problem is equivalent to the problem with weighted distances squared:

$$
\min _{X_{1} \ldots X_{m}} \max \left\{\max _{1 \leq j<k \leq m} v_{j k}^{2} l_{2}\left(X_{j}, X_{k}\right)^{2}, \underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}{\max } w_{j i}^{2} l_{2}\left(X_{j}, P_{i}\right)^{2}\right\}
$$

and to the constrained problem:

$$
\begin{array}{ll}
\min z & \\
z \geq v^{2}{ }_{j k} l_{2}\left(X_{j}, X_{k}\right)^{2} & 1 \leq j<k \leq m \\
z \geq w^{2}{ }_{j i} l_{2}\left(X, P_{i}\right)^{2} & 1 \leq i \leq n, \quad 1 \leq j \leq m
\end{array}
$$

As in the one facility model, write the Lagrangian of the constrained problem:

$$
L(z, X, \lambda, \gamma)=z-\sum_{1 \leq<j \leq m} \lambda,{ }_{j k}\left(z-v_{j k}^{2} l_{2}\left(X_{j}, X_{k}\right)^{2}\right)-\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j}\left(z-w^{2}{ }_{j i} l_{2}\left(X_{j}, P_{i}\right)^{2}\right)
$$

then the Lagrangian dual is: $\begin{array}{lll}\max & \min ^{2} \\ \lambda & \gamma & z X_{j}\end{array}$ ($\left., X, \lambda, \gamma\right)$.

$$
\lambda \gamma \quad z X_{j}
$$

The necessary conditions are:

$$
\begin{equation*}
\frac{\partial}{\partial z} L(z, X, \lambda, \gamma)=0 \text { implies } 1=\sum_{1 \leq<j \leq m} \lambda, j k+\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i j} \tag{1}
\end{equation*}
$$

These conditions eliminate the terms involving z from the Lagrangian.

$$
\begin{align*}
& \frac{\partial}{\partial X} L(z, X, \lambda, \gamma)=0 \text { implies } \sum_{1 \leq<j \leq m} \lambda,{ }_{j k} v_{j k}^{2}\left(X_{j}-X_{k}\right)+\sum_{j=1}^{m} \gamma_{i j} w_{j i}^{2}\left(X_{j}-P_{i}\right)=0(2) \\
& \frac{\partial}{\partial \lambda} L(z, X, \lambda, \gamma)=0 \text { implies } \quad z \geq v_{j k}^{2} l_{2}\left(X_{j}, X_{k}\right)^{2} 1 \leq j<k \leq m \tag{3}\\
& \frac{\partial}{\partial \gamma} L(z, X, \lambda, \gamma)=0 \text { implies } \quad z \geq w^{2}{ }_{j i} l_{2}\left(X, P_{i}\right)^{2} \quad 1 \leq i \leq n, \quad 1 \leq j \leq m \tag{4}
\end{align*}
$$

Observe that equations (2) are a generalization of the necessary conditions for the squared Euclidean distance problem whose solution is the center of gravity. Given values of λ and γ, equations (2) may be solved for X by a system of equations. If λ and γ are the optimal values of the dual multipliers, then the solution X is the optimal location.

This leads to an iterative procedure for estimating λ and γ.

1. Set $t=0$. Set initial values of $\lambda(t)_{j k}$ and $\gamma(t)_{i j}$ to 1 .
2. Solve for $X(t)_{j}$ using equations (2) and $\lambda(t)_{j k}$ and $\gamma(t)_{i j}$.
3. Set $\lambda(t+1)_{j k}=\lambda(t)_{j k} w_{j i} l_{2}\left(X(t)_{j}, P_{\mathrm{i}}\right) / U$ and $\gamma(t+1)_{i j}=\gamma(t)_{i j} v_{j k} l_{2}\left(X(t)_{j}, X(t)_{k}\right) / U$,

$$
\text { where } U=\sum_{1 \leq<j \leq m} \lambda(t)_{j k} v_{j k} l_{2}\left(X(t)_{j}, X(t)_{k}\right)-\sum_{i=1}^{n} \sum_{j=1}^{m} \gamma(t)_{i j} w_{j i} l_{2}\left(X(t)_{j}, P_{i}\right)
$$

4. Find $z(t)$ as the objective function value using $X(t)_{j} \quad j=1, \ldots, m$.
5. If a stopping criteria on $z(t)$ is met, stop, else, set $t=t+1$, and go to 2 .

References:

Drezner, Z. and G. O. Wesolowsky, Single Facility l_{p} distance minimax location, SIAM Algebraic Discrete Methods, 11, (1980) pp 315-321.

Elzinga J., D. W. Hearn, "Geometrical Solutions for some minimax location problems," Transportation Science, 6, (1972), pp 379-394.

Francis, R. L., "Some aspects of a minimax location problem," Operations Research, 15, (1967) pp 1163-1169.

Hearn, D. W. and J. Vijay, Efficient Algorithms for the Weighted Minimum Circle Problem, Opns Res, 30 (1982) pp 777-795.

Problems

1. Suppose four given point are located at $(0,0),(0,10),(5,0),(12,6)$ and all w_{i} are equal.
a. Find the gravity solution.
b. Use the gravity solution to intiate the iterative method and do 4 iterations.
c. Verify the solution by the illustration on page 12.
